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Abstract

A new canonical form of the Generalized Hamilto-
nian type including “dissipation” terms is proposed
for single input nonlinear dynamical systems whose
state trajectories are required to slide on a given sub-
manifold of the state space.

1. Introduction

In this article, a general canonical form is derived for
systems undergoing sliding motions on a submanifold
of the state space. The canonical form is based on the
use of projection operators associated with the sliding
surface function and the control input vector field.
A natural decomposition is obtained for the systems
drift forces which ranks them as : workless or con-
servative forces, i.e., those yielding invariance of the
switching surface coordinate; the attracting forces,
which are those naturally making the sliding mani-
fold attractive and try to drive the surface coordinate
function to lower absolute values, and the sliding sur-
face rejecting forces, which locally drive the system to
achieve higher absolute values of the switching sur-
face coordinate. These two last forces change their
nature depending on the local sign of the surface coor-
dinate function i.e., attracting forces above the surface
become repelling forces below the surface and vicev-
ersa. By suitably respecting the local beneficial non-
linearities, on each side of the sliding surface, an au-
tonomous non-divergence from the sliding surface is
guaranteed and thus, the variable structure feedback
controller yielding convergence towards the surface
can be designed in a more efficient manner. The con-
troller design simply consists in injecting “damping”,
or attractivity terms, which suitably complement the
local beneficial non-linearities of the system while, at
the same time, neutralizes those forces which locally
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destabilize the sliding surface coordinate.

The results in this article constitue an extension of
those found in [4] and [5], for feedback passivity of
nonlinear systems. In fact, the results here presented
give further insight into the long suspected connec-
tions and parallelisms between passivity based con-
trol (see Ortega et al [3]), Generalized Hamiltonian
systems (see [2], [9]) and Sliding Mode control [8].

In Section 2, a canonical form for sliding mode control
is derived. In Section 3 a sliding mode controller is
proposed which exploits the natural structure of the
system with respect to the sliding surface. Section
4 is devoted to some conclusions and suggestions for
further research.

2. A Canonical Form for Sliding Mode
Control

2.1. Fundamental
and results
Consider the class of nonlinear single-input single-
output systems described by

(t) = f(x)+g(z)u;ze XCR*; uelUUCR
y = o@) ; yeYCR 1)

where X' denotes the operating region of the sys-
tem, constituted by a sufficiently large open set con-
taining a continuum of equilibrium points, possi-
bly parametrized by a constant control input value
u =U € U, of the form z = Z(U) and given by
the solution of f(Z) + g(Z)U = 0. In particular, for
u = 0, we assume f(Z) = 0 implies T = 0. However,
motivated by a large class of real life systems, we are
specifically interested in nonzero constant state equi-
librium points z = Z, obtained by nonzero constant
control inputs v = U. The output function y = o(z)
is assumed to be zero at the equilibrium point, i.e.,
o(Z) =0.

assumptions, definitions

We assume that o(z) is a C! scalar function, called
the sliding surface function ¢ : R® — R such that



when the state trajectories are confined to its zero
level set So = {z € X : o(z) = 0}, the behaviour of
the system is as desired (for instance, asymptotically
stable towards a given equilibrium).

By 00/0z we denote the column vector field with
components do/dz; ¢ = 1,...,n. The transpose of
this gradient field, (8c/0z)T, is denoted by the row
vector 00/8zT. Let Lyo(z) denote the directional
derivative of the scalar function o(z) with respect to
the control input vector field g(z) at the point z €
X. We assume throughout the entire article that the
following assumption holds valid:

Lyo(z)= %9(2) #0 YVze X (2)

This last condition is usually known as the transver-
sality condition and simply establishes that the vector
field g(z) is not orthogonal to the gradient of o(z) at
any point = in X. In other words, the control vector
field g(z) is not tangential, at each z, to the sliding
surface function level sets, defined in the state space
of the system as, S = {z € X : o(z) = constant =
k}. This condition is quite familiar in sliding mode
control of nonlinear systems (see [6]) and it amounts
to having a sliding surface function which is locally
relative degree one in X. The zero dynamics corre-
sponding to the ideal sliding condition y = o(z) = 0
is assumed to be asymptotically stable towards the
isolated equilibrium point Z € S. In other words the
system is minimum phase with respect to the output
y = o{z). According to the results in [1], the sliding
surface function is a passive output.

For each z € X, we define a projection operator, along
the span of the control vector field g(z) onto the tan-
gent space to the constant level sets of the sliding sur-
face function o(z), as the matrix M(z) given by

ME) = [1- eeay]

The following proposition points out some properties
of the matrix M(z) which further justify the given
name of “projection operator”

Proposition 2.1 The matriz M(z) enjoys the fol-
lowing properties:

g(z) € Ker M(z)

Z—; € Ker MT(z)
M(z(I-M(z)) = 0 O]

Proof

The first property establishes that, locally,
M(z)g(z) = 0. Indeed, using the definition of M(z)
one has

ﬁg(r)% 9(z)

~ 9le) -~ oy ole)gra(a)

I -

= g(@)- ﬁg(zmga(z) — o2) - 9lz)

= 0 (5)

The second property is equivalent to /32T M(z) =
0.

T G
9zT Lyo(z) 0zT
_ 0o 1 Oo o
= W‘Lya(x)ﬁgma?
do do
T BT 8zl
= 0 (6)

The last property follows immediately from the fact
that the columns of the matrix (I — M(z)) are all in
the subspace span {g(z)}. Indeed,

1 do
I-Mz) = Img(x)(h—T

1 do do
= Le@ [g(m)a—ﬁ;---;g(m)a—%] @)

This last fact and the use of the first property yields
the result.

The following proposition depicts further properties
of the projection matrix M(z)

Proposition 2.2 Let f(z) be a smooth vector field,
then the vector M(z)f(z) can be written as

M) () = ()5

where J(z) is o skew-symmetric matriz, i.e., J(z) +

JT(z) =0.

On the other hand, the vector field (I — M(z))f(z)
can be written as

(I - ME@)f(@) = 2T @2 + 5@

where S(z) is a symmetric matriz, i.e., S(z) = ST(z)



Proof

The first part of the proposition easily follows from
the following string of algebraic manipulations

M@ = |1- A J1e
1
N Lyo(z) [(LHU(I)) f=) - Q(I)Lfcf(x)]

- Lg;(x) [%Q(I)f (=) - g(x)%f (z)]

-1 [ @ % - s @5

- 15 [ @ @) - o) @) 5

_ j(x)% ®)

For the proof of the second part of the proposition
note that,
1 do
(= M@N/@) = 1 oEgr 6

- b @l O

The result follows from the fact that any square ma-
trix N(z) and, in particular,

N(z) = (1/Lgo(2)) [g(e) ST (x)]
can always be written as

N(z) = (1/2)(N(2) - NT()) + 1/2(N(2) + N7 (2))

The first summand, which is written as,
1

sWN@ - NT@) =

1
CT [9=)fT(z) - f(z)g" ()]
g
1-
=- 5] (z) (10)
is clearly skew-symmetric, while the second summand
(1/2)(N(z)+ NT(z)) is symmetric. For the purposes

of further reference we define the matrix S(z) as fol-
lows

Sz) = %[N(a:)+NT(z)]

- 17 @@ + @)
and the matrix J(x) as

J(x) = %j(x)

2.2. Vector field decompositions through pro-
jection operators

As a consequence of the above propositions and defi-
nitions we have the following result.

Proposition 2.3 A drift vector field f(z(t)) can be
naturally decomposed in the following sum,

fla) = M(@@)f(z)+ (I - M(z))f(z)

= I@E @ W
Proof
Indeed, .
M(2)f(2) = F (=)
and

(I~ ME)S(0) =2 T2 + 5o

flz) = M(z)f(z)+ (I - M(z))f(z)

- 0o 1., 0o do
= \7(3)%—5\7(33)%+5(x)§

The following lemma is well known,

Lemma 2.4 Let S(z) be a symmetric matriz, then
S(x) can always be decomposed (nonuniguely) as the
sum of a positive semi-definite matriz Sp(x) and a
negative semi-definite matriz Sp(z). If the matriz is
already positive (semi) definite or, else, it is negative
(semi) definite then the decomposition is trivial.

2.3. A canonical form for sliding mode con-
trolled nonlinear systems

As a corollary to the above results, a nonlinear system
of the form (1), with a sliding surface function o(z),
satisfying the transversality condition Lgo(z) # O,
can always be rewritten as

£0) = T 2+ 5,0) 2 +5,0) 2 + gla)u (1)

with J(z) being skew-symmetric, and Sp(z) be-
ing positive semi-definite and Sp(z) negative semi-
definite. However, if Sp(x) is positive definite, then
Sp(x) is zero and conversely if Sp(z) is negative def-
inite then Sy(z) is zero.



2.4. Feedback sliding mode control for sys-
tems in canonical form

Consider a nonlinear system, given in the following
form,

J(z)g—z + S(x)g—:: + g(z)u

o(z) (14)

where the symmetric matrix S(z) is assumed to be
decomposed as the sum of two symmetric matrices
Sp(x) + Sn(z), as explained above.

T

y

Along the solutions of the system, the time derivative
of the “energy function”

V(z)= 202(1) (15)

is evaluated as V = o(z)a(z).

For o(z) > 0 we have,

A do do
o6 = [ =J(z ) 61:75 (I)Ev
+aa—‘;sn(x)a— + Lgd(z)u]
= [ :T (:z)a +L o(az)u]
< [ z)a + Lyo(z)u ] (16)
while for o(z) < 0 we obtain
. 8o do do
o6 = o [W{](z)a + 6—ITSp(x)a

+%Sn(z) g_o + Lga(:c)u]
- [:"T 5,(2) 22 a Su(@) 2 + Lyo(o)u ]
< [ b s. (x) + Lga(x)u} arn

Consider then the following variable structure input
coordinate transformation, with v denoting a new ex-
ternal independent control input,

For o(z) > 0,

1 do oo
- Zswy]

1 9o do
u= m [’U - msn(x)%] (19)

It is clear that the transformed system is given by the
following variable structure system:

For o(z) > 0
N O
= J(z)az+S(a:)a

1 do 1
+(1- o) o) + g0
y = o(z) (20)

while, for o(z) < 0

i = T+ S
1 do 1
(1= a9 ) Sn) e+ g9
y = o) (21)

Notice that, as shown in the previous section, the
projected vector field given by either

1
(I_ L)’ 9(= )BxT) p(2 )a
1 do do
(I —mg(x)az—q«) Sn(l)%

can be rewritten, respectively, as,

or

8o o
Ky (I)E and Kp (I)E_

with Kp(z) and Kn(z) being skew-symmetric matri-
ces. In other words, the transformed system is of the
form,

For o(z) > 0,
i = LR + S0 e
y = o@ (22)

with Z,(z) = J(z) + Kp(z) being skew symmetric
and,

For o(z) < 0,

T

I

do 8o 1
L&) 5 + 5@ 5 59

y = ofz) (23)
with Z,(z) = J(z) + Ka(z) being skew-symmetric.

The input coordinate transformations, viewed as a
partial variable structure feedback, has achieved neu-
tralization of the non-beneficial nonlinearities in the



system. Notice that this is far less demanding than
the usual practise of elimination of the non-beneficial
nonlinearities. The partial variable sturcture feed-
back has also achieved passivity for the variable struc-
ture system with respect to the sliding surface func-
tion viewed as a “degenerate” storage fucntion, as the
following proposition establishes,

Proposition 2.5 The system (14) is passive with re-
spect to the storage function V(z) = 1/20%(z), viewed
as a positive semidefinite (i.e., degenerate) storage
function, whenever S,(z), (respectively Sp(z) ) is
negative semidefinite (resp. positive semidefinite) and
it is strictly passive if Sp(z) is strictly negative defi-
nite (resp. strictly positive definite).

Proof
Taking the time derivatives of V(z), along the solu-

tions of the transformed system, away from the slid-
ing surface Sy one obtains:

For o(z) >0

V(z)

o) 25T 0) o+ Sl

0o
+6:c_TLg_ag(I)U]
= o(x) %Sn(z)g—i] + o(z)v

< o(zv=yv (24)

The calculation is similar for o(x) <0

Notice that if we let §(z) denote the transformed
control input vector field ﬂﬂg(m) then the variable
structure system may, in fact be written as:

P = P(I)g

In(z)a +Sp(:c)$ +g(zyd foro < 0

+ Sn(z) + g(z)d foro > 0

= @ (25)

which, except for the “damping” terms S,(x)d0/0z
and Sp(z)80/0z are, each one, in the same form as
the Genemlzzed Hamiltonian systems, widely stud-
ied in the literature (see [2],[9]). Notice that the
state-dependent input coordinate transformation ¥ =
v/o(z) is defined away from the sliding surface So.

3. A Sliding Mode Controller

The sliding mode controller for the input v may
now be obtained by simply injecting complemen-
tary “damping” to the natural beneficial nonlinear-
ities acting on each side of the sliding manifold. Let
Sn1(z) be a symmetric negative semidefinite matrix
such that S,(z) + Sni(z) is negative definite. Sim-
larly, let Spr(z) be a symmetric positive semidefinite
matrix such that Sp(z) + Sp1(x) is positive definite.
The following variable structure controller achieves
the reaching of the sliding surface and the creation of
a local sliding regime on such a surface

do 8o
msnl(l‘)a for U(SC) >0
v= (26)
do o
(,)I—TSPI(I)E for o(z) <0

The ideal sliding dynamics is readily obtained from
the invariance condition of the sliding surface coor-
dinate ¢ = 0. Consider the system canonical form
before any state feedback precompensation

z = J() +S(1:) +g(z)u
y = o= (27)

The ideal control input, or equivalent control, achiev-
ing surface coordinate invariance for all motions start-
ing on the sliding surface Sp is obtained as

1 o Sz )
LaazT 6:::

u=

The ideal sliding dynamics is governed by a projected
vector field of the form

1 do do
* [I - Lgag(z) BzT] Sta) oz
This vector field evidently belongs to the tangent sub-
space to the sliding manifold. The equivalent control
neutralizes all working forces in the system (beneficial
and non-beneficial forces) and it evidently bestows
a workless, or conservative, character to closed loop
ideal sliding dynamics.

J@E = 75

= i@% 5 @) +I@=0

3.1. Removing the transversality condition
limitation

The transversality condition (2) plays an essential
role in all our previous developments and provisions
should be taken for those cases in which it is not im-
mediately satisfied.



Suppose that, in X, the sliding surface function o(z)
is not relative degree equals to one with respect to
the control input u, i.e., the transversality condition
Lgyo(z) # 0 is not satisfied on the operating region X'.
It is intuitively clear that, in such a case, the sliding
surface function o(z) must have some relative degree
on a subset of X. For if not, then the sliding surface
function cannot be modified by any control action
whatsoever. In order to avoid needless specifications
we make the following assumption:

Assume the sliding surface function o(z) is relative
degree r > 1, in the operating region X of the state
space, i.e.,
LgL'}U(:lI) = 0;5=0,1,...,r-2Vz € X
LgL}—IU(I) # 0;Vz e X (28)

From the above assumption it should also be clear
that, in the operating region X, the condition
L'}"la(x) # 0 is also trivially satisfied, for, otherwise,
the relative degree of o(z) is not r in X, as assumed.

Let a be a nonzero scalar constant. Consider next
the following sliding surface function,

w(z) = o(z) + aL}‘la(x)

Then it is obviously true that W(z) does satisfy the
transversality condition in all of X'.

Lyw(z) = Lgo(x)+ aLgL}‘la(r)
aLyL}  a(z) #0 (29)

i

A possibly more suggestive modified sliding surface
function W(z) may be taken to be

r—1
w(z) = aga(z) + [z a L'}a(x)}

k=1

with ax # 0 V k being appropriate Hurwitz coeffi-
cients.

4. Conclusions

‘We have proposed a natural canonical form for non-
linear systems for which sliding motions are to be cre-
ated on a given sliding surface. The canonical form
is largely motivated from passivity based considera-
tions on the same class of systems. As a result, a
clear and natural decomposition of the internal sys-
tem forces is revealed which definitely helps in de-
signing a more efficient feedback variable structure
controller. The approach leads to a controller design

characterized by: 1) It respects the useful nonlinear-
ities of the system which help in locally reaching the
sliding surface. 2) It does not eliminate but, rather,
neutralizes those non-benefiical forces of the system
which tend to make the trajectories move away from
the sliding manifold and 3) It simply complements
the useful nonlinearities of the system, on each side
of the sliding surface, so as to locally achieve sliding
surface reachability. These last three characteristics
make the feedback controller signals more naturally
tunned to the system structure and control amplitude
limitations while achieving the control objective.

The results can be extended to the sliding mode con-
trol of multivariable nonlinear systems as already
demonstrated, in the context of feedback passivity,
in [7].
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