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Abstract: A controller design method which combines passivity based control and slid-
ing mode control is presented for the feedback regulation of a class of switched power
converters, addressed as “power factor precompensators” (PFP). Aside from load voltage
regulation to a prespecified constant level, a vital additional control objective is to avoid
reactive losses by keeping the input power factor close to unity. A passivity plus sliding
mode control approach is proposed which forces the input current to follow a suitable
reference signal which is in phase with the rectified supplied voltage. This results in
approximately satisfying both control objectives for the converter. Simulation results are
furnished for assessing the performance of the proposed feedback control laws. Copyright
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1. INTRODUCTION

Despite their widespread use in DC-to-DC power regulation,
the traditional DC-to-DC Power Converter topologies (such
as the boost, the buck-boost, the Cik ) have shown several
disadvantages when used in rectified AC-to-DC power conver-
sion schemes. One of the major drawbacks is related to the
low-input-power factor usually attained with PFP’s. Control
strategies are sought which, simultaneously, enhance the low
power factor while efficiently regulating the output load volt-
age.

In [4] new topologies are proposed for minimizing the in-
put current distortion of boost rectifiers. Explicit performance
parameters, such as the power factor, the total harmonic dis-
tortion, and others, are also proposed. In {6] a combination of
open loop plus Pl compensation is developed which improves
the power factor at the expence of poor transient behaviour.

In this article, we propose a feedback controller whose
closed loop performance approximately achieves, in a simulta-
neous fashion, the above stated control objectives. The con-
troller design strategy is based on using a passivity approach
in combination with a sliding mode control implementation.
The boost converter topology is chosen for detailed illustra-
tion, but the approach is extendable to other traditional con-
verter topologies as well. By defining a reference signal track-
ing problem on the input current of the converter, the power
factor can be made very close to unity as long as the tracked
signal is in phase with the rectified input voltage. For this
we propose two alternative strategies, one based on follow-
ing a rectified reference current signal, perfectly in phase with
the input voltage and a second one using a biased sinusoidal
input current reference signal, with its minima in phase with
the rectified input voltage. In either case, the load voltage DC
current component is explicitely computed in order to approx-
imately determine, via a partial system inversion, the required
reference signal amplitude for the input current. The passiv-
ity based-sliding mode controller performance is evaluated by
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explicitly computing the steady state power factor and the
AC-line current distortion for each case.

The rest of the paper is organized as follows: in section
2 we introduce the passivity based plus sliding mode con-
troller design methodology in rather general terms. In section
3 we apply the proposed methodology to a PFP of the Boost
type. Illustrative digital computer simulations are provided
in section 4 to assess the performance of the proposed control
scheme.

2. THE PASSIVITY-BASED PLUS SLIDING
MODE CONTROL SCHEME

In this section we shall present a sliding mode control imple-
mentation of a common passivity based control scheme known
as the “energy shapping plus damping injection” (ESDI) con-
troller design scheme. We begin by briefly revisiting the basic
ESDI controller design methodology, extensively used in pas-
sivity based control a concept first introduced in [3].

2.1, The Energy Shapping plus Damping
Injection Method

Consider an n-dimensional nonlinear system of the form

]
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where X denotes a sufficiently large open subset of IR,
containing the system trajectories. X is addressed here as
the operating region of the system. The set U denotes the
set of available input values which, for the moment, is also
considered to be a sufficiently large portion of the real line IR.
The vector field f(z) is such that £(0) =0, i.e., the origin is a
zero input equilibrium point for the system. The output map
h:R" — IR, satisfies h(0) =

It is also assumed that the output function h(z) of system
(1) is relative degree equals to one i.e., the directional deriva-
tive, Loh(z), is bounded away from zero in the opérating re-
gion of the system. Also, given a scalar locally C* function
of time, y*(t), the system is assumed to be stable when the
regulated output y(t) is forced to locally track the signal y*(t)
on, at least, a finite open time interval. In other words, the
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associated zero dynamics of the system, consistent with the
time varying constraint y = y"(t), exhibits no internal finite
escape time to infinity while the trajectory y*(t) is being per-
fectly followed. If y*(t) happens to be a constant reference
signal, which can be followed in an indefinite manner, then
the corresponding zero dynamics is assumed to be asymptot-
ically stable towards an equilibrium point located in &, i.e,
the system is minimum phase.

If the system is relative degree one in X then, there exists
an invertible state coordinate transformation in &’

(z,9) = (T(2). h(z)) (2)

which locally takes the system into the following normal form
given by

z

v

9(z,y)
a(z,y) +b(z, y)u

(3)

The scalar function Lgh(z,y) = b(z,y), is nonzero in X. Note
that from the assumptions on f(z) and the diffeomorphic na-
ture of the transformation, it follows that ¢(0,0) = 0 and
a(0,0) = 0. Also, the minimum phase assumption implies
that the system z = g(z,y"(t)) is a stable system.

It is also a straightforward consequence of the relative de-
gree one and the minimum phase assumptions, that by spec-
ifying an appropriate regular static state feedback of the form
u = a(z,y) + B(z, y)v, where 3(z) is a nonzero scalar function
(see Byrnes, Isidori and Willems, [1]), the system (3) can be
made passive with respect to some C? positive definite storage
function V'(z,y). The function V(z,y) can always be chosen
to be zero at the origin of coordinates (z,y) = (0,0).

We further assume that V(z,y) is such that the gradient
components 8V /8z and 8V/8y of the storage function only
vanish identically at the origin (z,y) = (0,0). The following
nonlinear generalization of the classical Kalman-Yacubovitch-
Popov properties, proposed in (see {2]), are satisfied by the
transformed system ,

Tty + Potaey o (9
and,
M) yz yy =y ()

Ay
Let (24, ya), with 24 € IR*™! and ya € IR, represent the

state components of an auxiliary dynamical system yet to be
specified. Furthermore, let the vector (£,7n) be defined as the
error vector, (£,1) = (z — 24,y — ya). Let also R. and R,
stand for a constant, symmetric (n — 1) x (n — 1) matrix and
a strictly positive constant scalar, respectively, such that the
composite matrix,
me| 5]

is positive definite in IR™.

In general terms, the ESDI controller design methodology is
based on the consideration of the following auziliary dynam-

ical system, characterized by an ezogenous composite state
variable (z4, ya), defined by,

0
Ry

R.
0

, V(& n)
fa=glzy) —q&m+ B e,y
nN=y-=ya
av(¢,
yg:a(z,y)—a({,n)+b(z,y)u+Ry—%7'l’ E=2~2z4
n=Yy—vyd

(6)
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We have the following lemma:
Lemma 2.1 If there exists an input function u and a vec-
tor (z4,ya) such that the differential equation (6} is satisfied,
then the error vector (§,n) = (2 — z4,y — ya) asymptotically
converges to zero.

Proof: The proof is based on obtaining a differential equation
describing the error vector dynamics,

E = aten- 2D
i = alem-RZED 7

Computing the time derivative of the positive definite stor-
age function V(£,n) along the trajectories of the autonomous
error vector equation (7), we obtain

ven = &M + EDaen)
_aV(&n) , V(En) avie,n)
a7 it 3 R’[ an ]
<0 (8)

The negativity of V(E, n) follows directly from the first
KYP property in (4) and the positivity of the composite con-
stant matrix R.y in R"

It is easy to see that the set of error states (£,7n) where
V(€,n) = 0 is represented only by the origin of coordinates

(&,n) = (0,0). Indeed, V(§,n) = 0 for (£,n) # (0, 0) implies,
that
V¢, V¢,
28 em) + 24 Mt
_ V(Em) , V() avige,n)*
. W Wen p [oViea)]

_ [8V(€,n) 3V(£,n)] [ R. 0 ] [ ﬂ’—%ﬂl ]
- a¢T on 0 R, avica)
>0 (9

which is a contradiction of property (4), unless the following

equality is satisfied
=50 28] % 3]
0

O¢T on

From the assumptions about the positivity of the compos-
ite matrix R.y, and the nonvanishing assumption about the
gradients of V, it follows that the relation (11) is valid if and
only if (€,n) = (0,0). In other words, the set of points where
V(§,n) = 0 is precisely constituted by the origin of coordi-
nates (£,7) = (0,0). Invoking LaSalle’s invariance principle,
the origin (£,7) = (0,0) is an asymptotically stable equilib-

2v(em)

0 B¢
B8v(em),
ED)

R, ] =0 (10)

rium point.
[u]njs]
Remark: If the system equations are of the particular but
important form
Di = J(z,u)x — R(z)z + g(z)u

where D is a positive definite constant matrix, J(z,u) is an
skew-symmetric matrix, for all (z,u) and R(z) is a positive
semidefinite symmetric matrix for all z, which is also abso-
lutely continuous, then one can exploit the semilinearity in
the state vanable z by proposing an auxliary system of the
form,

Dig = J(z,u)za — R(2)za + g(z)u + Ri(z — 24)



where R is a constant positive definite matrix representing
the damping injection term.

The above choice of the auxiliary dynamics yields a time-
varying linear differential equation for the error e = z — z4
given by,

Dé =[J(z,u) + R(z)+ Rle

which under all the above assumptions is asymptotically sta-
ble to zero as it can be verified from the Lyapunov function
candidate V(e) = $e” De.

The energy shapping aspect of the above method usually
refers to the time varying storage function modification, im-
plicit in the expression V(£,n) = V(z—24,y—ya4). The damp-
ing injection, on the other hand, refers to the stabilizing effect,
on the error dynamics (7), of the terms ~R.9V (£, n)/8¢ and
—R, OV (€,m)/ €.

Since the error variables (£,17) converge to zero, then the
original system state (z,y) converges to the auxiliary system
state (zd,yq). As stated, the control objective is to solve a
reference signal tracking problem for the regulated output y.
The energy shapping plus damping injection method proceeds
to set the value of the auxiliary variable yq, in the last differ-
ential equation of (6), to a desired time varying scalar function
ya(t). This signal, of course, represents the reference signal to
be tracked by the output of the system, i.e., y3(t) = y*(¢).
Once the particularization, ya(t) = y3(t), has been carried
out in both equations (6), the method proceeds to solve for
the feedback control input u from the last equation in (6) and
to regard the zero dynamics, corresponding to the restriction
ya(t) = yg(t), as a dynamical feedback controller state equa-
tion. Such a dynamical feedback controller is characterized
then by an n — 1 dimensional state vector, denoted here by ¢,
which formally replaces the auxiliary dynamics vector z4.

The obtained control is then given by

u(z,y,Cva) = bz,v) 7 s —alz,y) +a{z - Cy-v3)
Vi(z —
_Ryig_(zar}.‘?.vﬂ cmaec (1)
n=y-yg

and the dynamical controller state equation is obtained as,

av(&,m)
o€

¢=qlz,¥)-q(z— ¢, y—yi)+ R: (12)

f=z-¢
n=y-—ya

where, from the minimum phase assumption, also ¢ € L.

2.2. A Shiding Mode Control Implementation

- In this section we shall be making reference to well known
results in sliding mode control. The reader unfamiliar with
this theory is referred to the book by Utkin (7].

In many applications of the ESDI synthesis method, the
control input u of the system is only allowed to take values on
a discrete set I. Specifically, in the class of switched systems
to be considered in this paper, the set of available control
values is represented by the binary set & = {0,1}.

In order to obtain a discontinuous feedback control solution
of the tracking problem proposed on the original system, the
ESDI solution method, previously revisited, has to be suitably

reinterpreted in terms of the traditional elements of the sliding -

mode control theory.

It turns out that forcing the restrictions ya(t) = ya(t) and
ya(t) = y2(¢) upon the auxiliary dynamics (6) effectively corre-
sponds to a simultaneous ideal sliding dynamics and an equiv-
alent control determination for a corresponding sliding surface

defined by a time varying relation of the form,

o(t) = ya = ya(t) (13)
from the associated sliding mode invariance conditions
c=0; 6=0 (14)

It should be clear that, for switched regulated systems, the
limited availability of control input values renders unfeasible
the synthesis of the equivalent control as an actual feedback
controller. The invariance conditions ¢ = 0 and & = 0 can
be made valid only in an average sense after an appropriate
switching policy is deviced, usually characterized by a very
large switching frequency, which renders valid the invariance
conditions ¢ =0 and ¢ = 0.

Formally, however, the equivalent control is defined only on
the basis of the condition & = 0 (see [7]). As such, the equiv-
alent control represents a virtual feedback control action that,
in the absence of perturbations and modelling errors, ideally
kecps the system responses evolving on a manifold represented
by the condition & = constant. In particular, the equivalent
control ideally keeps the trajectories on the sliding surface
o = 0, when the initial conditions of the system are set pre-
cisely on such a surface. The equivalent control expression,
computed on the sliding surface & = 0, however, is rather use-
ful in determining the region of existence of a sliding regime
on such a surface.

The following theorem may be proven in quite general

terms,[7],
Theorem 2.2 A sliding regime ezists on an open region of
the time-varying n — 1 dimensional manifold o 0 if and
only if the equivalent control u.q, computed from the condition
¢ =0, satisfies:

0<uyq| <1

o=0

(18)

We proceed to rewrite the auxiliary system equations in
new coordinates (za, o), as follows

a(z,¥) — glz = za,y — o —ya)

¢ =
3V (€,n)
73 f=z-2q4
n=y—-o-y;
¢ = —yata(z,y)-a(z—zay—0c—y3)

Ad()]

+b(z,y)u+ Ry on

f=2z—2zq
n=y—-o—yg
(16)

In the context of the ESDI controller design methodology,
the equivalent control corresponding to the condition o = ya—
y3(2) = 0 can be computed from the last equation in (16), as

teq(2, ¥, 24,0, ¥3) = b(z,y) ™" [§a — a(z,v)

V(&)

+a(z — za,y — 0 —ya) — Ry on

§=2z-2zq
n=y-o-y;
(10
Rewritting the sliding surface dynamics by adding and sub-
stracting in the second equation of (16) the quantity b(z, y)ueq
and using the expression for the equivalent control (17) one
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readily obtains,
—yi+a(z,y) —a(z ~ 24,y — 0 = yI) + b(z, Y)ueq
_ Vi
+b(2, y)(u — ueg) + Ry—gn—' f=z-z4
n=y-o0-—ya
(18)

g =

= b(z,y) [u = ueg(2, ¥,24,0,42)]
We then have the following result

Proposition 2.3 Let (z,y) be a given n-dimensional vector
of time-varying components then, the feedback swtiching pol-
1 for b(z,y)c <0

icy:
=
{ 0 for b(z,y)o >0

locally drives the trajectories of (18) towards & = 0 and, more-
over, it locally sustains a sliding regime on the sliding surface
(i.e., ¢ = 0 and & =0 are rendered valid in an average sense)
provided the equivalent control, given by (17), satisfies the fol-
lowing relation,

(19)

(20)

Proof: Taking the singular Lyapunov function candidate
V(o) = $0° we obtain upon evaluating V(o) along the tra-

jectories of the regulated surface coordinate function ¢,

0 < ueq(z,y,24,0,¥3) < 1

(21
It is evident that if the switching policy (19) is used and pro-
vided (20) is valid for ¢ # 0, then V(o) < 0 for all & # 0.
The invariance set V(¢) = 0 is hit in finite time and a sliding
regime is subsequently created on the manifold ¢ = 0. .

ana

V(o) = 06 = b(z, )0 [u — uee(z,, 24, 9, 43)]

3. SWITCH-REGULATED BOOST
CONVERTER AS A PFP

In this section we will apply the previously described method-
ology to a PFP of the boost type, whose circuit is shown in
figure 1. Moreover, the power factor will be explicitly com-
puted in order to evaluate the performance of the proposed
controller.

B

v F X

® [*]  «e 7xs

x 1{

0o

7

&
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Fig. 1: Switch-regulated PFP Boost circuit
The differential equations describing the circuit are,

Lz, = —uz;+ V]sin(wt)]
. 1
Cz; = uz)=- E” (22)

where r, and z; are the input inductor current and the output
capacitor voltage variables, respectively; V|sin{wt)] > 0 is
the rectified voltage of the ac-line source; R is the nominal
constant value of the output resistance; u, which takes values
in the discrete set {0, 1}, denotes the switch position function,
and acts as a control input. The control objective is twofold.
First, the output z; should be driven to some constant desired
value Vg > V. Second, in order to guarantee a power factor
near unity, the inductor current z, should follow a rectified
sinusoidal signal of the same frequency and also in phase with
the ac-line voltage source.

8.1. Controller design

Consider the boost model (22), rewritten in matrix form,

Di=J(u)z—~Rz+r (23)
where z = [z1, )7, D = diag{L, C}, R = diag{0, %},
7 = [V]sin(wt)], 0]7, and J(u) is a skew symmetric matrix

given by,
0 -
J(v) = [ u 0" ]

Consider also the auxiliary system,

Dig = J(u)za — Rza+ T+ Ri(z—z4) (24)
where z4 = [214, 224]7, R1(x — z4) is the damping injection
terms, with matrix R; = diag{R:, R;'}, Ri,R; € R™.

We know from (5] that in the boost converter, the output
z; yields a minimum phase system, while the capacitor volt-
age z2, yields a non minimum phase system. For this reason
control actions are geared to indirectly regulate z» through
1.

In order to fullfill the two control objectives, namely, power
factor close to unity and a constant output voltage level, we
propose the following sliding surface on the auxiliary system,

0 = T1a — T1q = 714 — K| sin(wt)| (25)
where K is a constant factor to be determined through steady
state considerations.

The time derivative of the sliding surface is,

&= %[—uzzd +Visin(wt)| + Ri(z1 - 1) — Lils)  (26)

Is clear that Z}4 does not exist at the instants wt = kx, k =
0,...,n. As a consequence we can only track the proposed
signal during open intervals of time.

The equivalent control, on o = 0 is given by,

5 1 . ..
Ueq = Py [VIsin(wt)] + Ry(z1 — z1a) — LE1a), T24#0
(27)
which exists as long as wt # k=, k=0, ...,n. For the positive
half cycle we have,

Ueqg = %[Vsin(wt) — KLwcos(wt) 4+ Ri(z: — %14)), 224 # 0
2d
(28)
The existence conditions (15) for a sliding regime to exist
are translated into the following expressions,

2VZiLw

wt > arctan(y), v= g (29)
2V2Lw\?
2 A kel
Vi > 1% +( G ) (30)

i.e., the equivalent control is defined in the period
[arctan(y), =), and outside this time interval it takes nega-
tive values. The second condition implies that V; should be
strictly larger than V.

The following switching policy guarantees a finite time
reachability of the sliding surface and the creation of a local
sliding regime,

o= %(1 +sign(o)) (31)
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8.2. Desired inductor current.

To determine the required amplitude K of the desired inductor
current we consider that z, is described with sufficient accu-
racy when its first harmonic is retained while z, is assumed
to be nearly a dc—quantity. This assumptions are reasonable
if the output capacitor is large enough.

The total energy in the system is given by,

L C
= 5‘13 + ?Ig

Its time derivative is given by,

H =2, V]sin(wt)} - 712-1:3
In steady state this energy is mantained constant in an
averaged way, since the system is stable. Thus, by taking only
the de-components, and assuming in steady state 255 = Va
and 1,55 = z14 = K|sin(wt)|, we have,

0 = (KVsin*(wt))pe — %

where (-)pc indicates the dc—component.
Solving the last equation for K, the desired current results
in,

A 2v2 .
2la = 2| sin(ut)| (32)

3.8. Power factor analysis

In this subsection we will obtain an explicit expression for
the power factor (See [4) for further details). We start by
obtaining an explicit expression for the trayectory of the input
current. For this, we assume that the system is already in the
steady state and we consider only the positive half cycle.

As discussed before, u., will try to adopt a negative value
at the begining of the cycle, so the best the control can do is
to set u = 0. With this choice of u the differential equation
for £ from (22), reduces to,

Ly = Vsin(wt)

which can be solved considering the initial condition :(0) =
0, this yields,

zi{t) = IV;(I — cos(wt))

Moreover, the controller will be maintained at the value
u = 0 until the state trajectory reaches the tracking reference
signal at wt = 3, where 8 may be explicitely computed as
follows,
WViwL
RV?
The trajectory of the inductor current, in steady state, is
thus described as,

B = 2 arctan(

) = 2arctan(y) (33)

vV
_ [ =zt- cos(wt)), 0<wt<B
0= { T sin(wt), B<ut<sn (34)

Let z:(t) denote the ac-line current signal z;(t), at the
input of the diode rectifier. This signal has the alternate sy-
metrical form shown in fig. 2 and it is expressed as,

z1(t) = z.(t)sign{sin(wt)) (33)

The fundamental components of z;(t), i.e., the real and
imaginary parts of the first harmonic of x;(t) are given by,

Xi = opn)-9) (3)
2
X, = 2:‘;_21“;L(sin(ﬁ)+r—6) 37)

Fig. 2: Input current time response.

The fundamental power factor (FPF) is defined using the
fundamental components given above as,

X, 1

FPF = — = (38
NreEse: :

o (1 mhs)

The root mean square value of z;(t). denoted by z;aums is,
on the other hand, given by

FIRMS mL2w? L\2

(_VL [(38-2sin(6) + Join(28))

2V 1, ¥
+ov (T84 5“”“”)])

The power factor (PF) is then computed in the following
manner, ’

(39)

X2 _
V2zrams
(22 1-2)
[oaEies (2 - zein(e) + 202) 1 (1 - § 4 2529)]
(40)
Using the above results we can state the following proposi-
tion.
Proposition 8.1 Consider the PFP power converter of the
“boost” type described by (22), and consider also the auziliary
dynamics given by egs.(24).
If the switching policy is defined as,

PF =

us= -;-(l — sign{o))

where ¢ = z14 — z}4 is the sliding surface, with x7, given
by (82), then the closed loop system ezhibits regulation of the
output capacitor voltage towards the desired constant velue Vy
in an averaged sense. Moreover, the switching policy locally
creates a stable sliding regime on open sets of the form wt €
[+ kx, (k+1)7),(k =0,1,..,n) provided,

2ViLlw
RV?

wt > arctan(

W2Lw\?

- i

And, the steady state form of the current inductor trajectory

has a power factor given by the expression (40), whith PF — 1
as 8- 0.

Proof: From the previous developements, is clear that the .
sliding regime will be stablished on open sets of the forn. wt €
[8 + k=, (k + 1)7), (k = 0,1,..,n), wich are strictly included
in the open sets where the equivalent contro! is defined, i.e.,
wt € [y +km, (k4 1)7),(k = 0,1,..,n). Actually, 8 is twice
the value of v. Thus, the form of the current trajectory will
be as given in fig. 2. From eq. (40) is easy to see that as
B = 0, PF -+ 1. Its corresponding rectified signal will have
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a slightly different dc-component than the required to assure
z2 = V4. So we can only assure that z, will converge towards
a small neighborhood of Vu, and 2; — V4 as 3 — 0. The
latter can be established by computing the error between the
dc-components of the inductor current in steady state and its
desired value,

B = sin(3)

- 5 v
(Fi)oe ~ (zia)pe = ——=(
ooo

3.4. Following a softer desired current signal

An alternative strategy that avoids the discontinuities pre-
sented in the previous scheme, consists in approximating the
rectified sinusoidal reference signal by a signal of the form,

. qVv?

2
=—= -= 2
Tl = (1 3 cos( wt)) (41)
The time derivative of this signal is,
V2
e = Vaw (2wt) (42)

3rRV
For such a reference signal, the existence condition for a
sliding motion is given by,
16VZiwl
3rRV
which in steady state, is further reduced to

{2wl
4Vy rR<V<Vd

As a consequence, by appropriately choosing the involved pa-
rameters we can guarantee perfect tracking during the entire
period.

The ac-line current signal z;(t), at the input of the diode
rectifier takes now the alternate symetrical form shown in fig.
3.

0 £ Vsin{wt) - sin(2wt) + Ry (21 = z14) £ Z24

(43)

X;

Fig. 3: Input current time response. Approximate version

The Power factor analysisis carried out in a similar manner
as before. The FPF is now given by,

X
FPF =cos¢) = —— =1 44
® = e b
The root mean square value of z(t) is computed as,
1 + (45)

RV
The ac-line current distortion denoted by CDF is defined

as,
x|
V2zirMS

which in our case turns out to be,

2-

CDF = (46)

CDF = (47)

The power factor PF is now obta.ined as

2v22

PF === %09 (48)
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4. SIMULATION RESULTS

Digital computer simulations were performed for evaluating of
the proposed feedback controller. The following parameters
were used, R = 1002, L = 10mH. C = 2200uF, V = V2 x 115
Volts, w = 27 x (60) rad/seg. Va = 215 Volts, Ry =1, Ry = 1.
These parameters were taken from the implementation of a
PFC control of ac-mains current supplying the battery charg-
ing power in a 5kW high performance off-line uninterruptible
power supply system reported in [4). For this example the
power factor takes the value PF =0.999.

In fig. 4 the responses of the Boost PFP under sliding mode
plus Passivity based controller are shown. In this case, the
desired current signal to be followed is a rectified sinuscidal
signal.
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Fig. 4: Time response for the Boost PFP
In fig. 5 the closed loop responses are shown for the PFP
converter using the sinusoidal biased approximation of the rec-
tified sinusoidal signal.
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Fig. 5: Time response for an approximative desired current
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