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Abstract

A trajectory planning approach is proposed for con-
trolled path tracking maneuvers in an underactuated
ship model. The trajectories of the position coordi-
nates are planned in an off-line manner exploiting the
partial differential flatness of the non-linear model and
its Liouvillian character. The nominal state and con-
trol inputs trajectories are then used, in the tradi-
tional manner, to obtain an incremental feedback con-
trol law, computed on the basis of the controllable,
time-varying, Jacobian linearization model.

1 Introduction

The control of a ship having two independent thrusters,
located at the aft, has received sustained attention in
the last few years. The interest in devising fecdback
control strategies for the underactuated ship model
stems from the fact that the system does not satisfy
Brockett’s necessary condition for stabilization to the
origin by means of time-invariant state feedback (see
Brockett, [1]). Reyhanoglu [13] proposes a discontinu-
ous feedback control which locally achieves exponential
decay towards a desired equilibrium. A feedback lin-
earization approach was proposed by Godhavn [8] for
the regulation of the position variables without orienta-
tion control. In an article by Pettersen and Egeland [9],
a time-varying feedback control law is proposed which
exponentially stabilizes the state towards a given equi-
librium point. Time varying quasi-periodic feedback
control, as in Pettersen and Egeland [10], has been
proposed exploiting the homogeneity properties of a
suitably transformed model achieving simultaneous ex-
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ponential stabilization of the position and orientation
variables. A remarkable experimental set-up has been
built which is described in the work of Pettersen and
Fossen [11]. In this work the time varying feedback
control found in [9] is extended to include integral con-
trol actions with excellent experimental results. High
frequency fecdback control signals, in combination with
averaging theory and backstepping, has also been pro-
posed by Pettersen and Nijmeijer [12] to obtain practi-
cal stabilization of the ship towards a desired equilib-
rium and also for trajectory tracking tasks.

In this article, we propose a feedback control scheme
based on trajectory planning and approximate lin-
earization around the off-line computed trajectory. For
the trajectory planning apects, use is made of the fact
that the system model exhibits a differentially fla sub-
system (see the work of Fliess and his colleages [5)-[6]
for a full discussion of the concept and its many im-
plications). The flat subsystem is characterized by the
angular orientation variable and the sway velocity. The
control inputs can then be readily computed as dif-
ferential funcitons of the flat variables, i.e., functions
of the flat variables and a finite number of their time
derivatives. The remaining variables (i.e., the position
variables) can be expressed as quadratures of differen-
tial funcitons of the flat variables. Nonflat systems
satisfying this last property are known as Liouvillian
systems. They were first introduced in the work of Ch-
elouah [3]. Liouvillian systems constitute an extension
of the class of differentially flat systems with interest-
ing implications in the exact discretization of nonlinear
systems, as well as in other areas of nonlinear control.

In Section 2 of this article we present some generali-
ties about Liouvillian systems and propose a feedback
control scheme for such systems which is based on “tra-
jectory planning”. In Section 3 we describe the under-
actuated ship model to be used in our developments
( this model, taken from [12], was developed by Fos-
sen [7]). We show that the model is Liouvillian and
proceed to describe an off-line trajectory planning by



inverting the integro-differential parametrization defin-
ing the nonflat variables. A comnination of high-gain
and linearizing control is used to exponentially stabi-
lize the linearized tracking error variables towards the
origin. Section 4 presents the simulation results and
Section 5 presents the conclusions and some sugges-
tions for furhter reserarch.

2 Liouvillian systems

Liouvillian systems constitute a natural extension of
differentially flat systems into the area of systems which
are non equivalent to controllable linear systems by
means of endogenous feedback. The class of Liouvil-
lian systems contains a subset of the class of non-flat
systems with an identifiable flat subsystem of maximal
dimension. A nonflat system is said to be Liouvillian,
or integrable by quadratures, if the variables not belong-
ing to the flat subsystem are expressible as elementary
integrations of the flat outputs and a finite number
of their time derivatives. An exposition about Liouvil-
lian systems, from the perspective of Differential Galois
theory in the context of Piccard-Vessiot extensions of
differentially flat fields, may be found in [3].

Consider the following composite system, addressed, in
general, as a “feedforward integrator” system,

= g(z,u), z€ R ,ueR™
z = f(z,u), z€R"™ (1)

Suppose that the subsystem described by the z vari-
ables is differentially flat. Hence, a set of m output
variables, denoted by y, may be found such that; at
least locally, a differential parametrization of the state
vector z, and the control inputs u, can be obtained as
follows,

=9, 9...,¥%) 5 u=9@79,...,5°") (2

The above description of z and u implies that the non-
flat variables 2 may be expressed as

£ =7,9,...,yN) (3)

In some cases, a specification of the flat variables y
as functions of time, denoted by y*(t), already fully
describes the control objectives for the designer. The
suitably initialized integration of (3}, and the differen-
tial parametrization (2), allow then the computation,
in an off-line fashion, of all the corresponding trajecto-
ries for the state variables of the system, z*(t), 2°(t),
as well as the associated nominal control inputs, u*(t).
Such off-line computed state and input reference trajec-
tories can be readily used in an approximate lineariza-
tion based fecdback control scheme for the design of

the incremental feedback control inputs, us. The feed-
back incremental inputs appropriately complement the
nominal input signals, u*(t), for solving the trajectory
tracking task. The underlying control design problem
entitles the regulation, towards the origin, of a time-
varying linearized system described by the incremental
state variables z; = — z*(t) and z; = 2 — 2*(t). The
regulation task is to be accomplished by means of an
appropriately designed feedback control law for the in-
cremental control inputs, us = us(z*(t), 2* (t),zs, 25)-

The more interesting case, however, is constituted by
that in which the nonflat variables z are to track a
given prespecified trajectory z*(t), proposed as the con-
trol objective by the designer. Generally speaking, the
Jacobian matriz 8v/8y(*+)) is non-invertible and the
relation (3) does not always properly define a set of dif-
ferential, or algebraic, equations for the flat variables
¥’s defined now in terms of the given 2*(t), viewed as
given differential parameters. In some particular cases
only a subset of the flat variables y may be directly
obtained in terms of a subset of the 2’s and their cor-
responding time derivatives. In such cases, the compu-
tation of such flat variables can be performed without
integrating differential equations. In general, however,
provided that suitable initial conditions are known for
the flat variables, ¥ and a finite number of their time
derivatives, one is led to obtain, from (3), a differential-
algebraic relation of the following form,

wz 2,2 y,9,..,y®) =0 4

From a relation of this sort, the flat variables trajecto-
ries, ¥*(t), can be locally computed in correspondence
with the specified non-flat variables desired reference
trajectories, 2*(t). This, of course, entitles solving the
following set of implicit differential algebraic equations
for the flat variables y, with appropriate initial condi-
tions.

B
(= (1), (2), .. ,CZ—ﬁz'(t),y,y,...,y(ﬁ)) 0 ()

3 The underactuated ship model

In a recent paper by Pettersen and Nijmeijer, [12], the
following mathematical model is proposed for the kine-
matics of an underactuated ship, which includes a sway
acceleration constraint,

£ = cos(¥)u; —sin(y)z

y = sin(¢)us + cos(y)z

¥ =

¢ = —yuuz—fz (6)

In the above model, z, ¥ and ¥ determine, respectively,
the position and orientation of the ship in reference to



a fixed earth frame. The control input variables u; and
uz represent, in fact, the surge (i.e., forward) and yaw
velocities. The state variable z represents the sway
velocity. The constants vy and 3 are strictly positive
constants with v < 1.

System (6) is not differentially flat, but it is, neverthe-
less, Liouvillian. This means that it contains a flat sub-
system, here represented by the states ¥ and z, while
the remaining variables,  and y, can be expressed as
quadratures of differential functions of the flat variables
(i.e., functions of the flat variables and a finite number
of their time derivatives).

3.1 The Liouvillian character of the underactu-
ated ship model
Consider the system variables F = and £ = z. The
subsystem characterized by the states 9 and z is differ-
entially flat, as the following differential parametriza-
tion demonstrates,

v = F, 2z = L .

w o= By, = F @
An integro-differential parametrization of the nonflat
position variables W = z and S = ¥, in terms of the
flat variables F and L, is given by

v = —£+ﬁ cos — Lsin
w = ( 7}._ )(]—') Lsin(F)

S = <_E:f£) sin(F) + Lcos(F)  (8)

Hence, displacement variables WW and S are express-
ible as quadratures of differential functions of the flat
outputs, i.e.,

W = /{—(cl:—f.ﬁﬁ)cos}'—[lsin}'}dt
s = /{—(E:jf )sinf+ccosf}dz ©)

Notice that the Jacobian matrix

() [ Lfremr ez ]
o(F,L) | LffeinF —if

is singular and, therefore, a set of simultaneous differ-
ential equations for F and £, parametrized in terms of
differential functions of YW and S cannot be obtained.
However, one may still invert by other means the inte-
grodifferential parametrization (8) and procecd to ob-
tain, after some algebraic manipulations, the following

explicit set of differential-algebraic equations for F and
L

1
(y=1) (W(t) cos F + S(t) sin }') 8
[ (W0 +BW(0) sin 7 — () + BS()) cos f]
L = —W(t)sinF +85(t)cosF (11)

Remark 3.1 Notice, that by straightforward manipu-
lations on the system equations (6) one may also obtain
the following static relation for F,

= n S —arctan )
F(t) = arcta (W(t)) t (ul(t)) (12)

which clearly depicts the specific influence of the sway
velocity £ on the instantaneous value of the orientation
angle F.

3.2 Off-line trajectory planning

Suppose that a desired reference trajectory is speci-
fied for the nonflat outputs, W and S, as the time-
varying signals, W*(t), S*(t), respectively. Then, the
algebraic-differential system (11), particularized for the
specified W*(t), S*(t), is to be viewed as an off-line
trajectory planning solver which produces the required
corresponding trajectories for F*(t) and L*(t). The
initial condition for the differential equation defining
F* is obtained from the nominal initial value ¥(tg)
of the orientation angle ¥ corresponding to the ref-
erence trajectory initial conditions z(to) = W'(to),
ylto) = S*(to), d(to) = W*(to) and y(to) = S"(to).
In fact, if 2(to) = L(to) = 0, then,

- - S(to)
F(to) = ¥(to) = arctan Wito) (13)

The nominal control inputs, 4 (t), ©3(t), corresponding
to the off-line computed trajectories may also be readily
obtained in terms of the planned signals W*(t), S*(t)
and F*(t) as follows,

ui(t) W’ (t) cos(F* (1)) + S* () sin(F* (¢)
u3(t) F(1) (14)

The Jacobian linearization of system (6) around the
planned trajectories W*(t), S*(t), F*(t) , L*(t), yields
the following time-varying linear system

&5 = —8"(t)ws— sin(F*(t))zs + cos(F*(t))us

g5 = W'(t)¥s + cos(F*(t))zs + sin(F* (t))uss

vs = uss

25 = —Pzs— yuj(t) wis —yui(t) uas (15)



where,

T-W'(t) 5 ys=y-5"(1)
Y—F(t) ; zs=2z—L(t) (16)

s =

Y5 =

The incremental control inputs u34, u2s, complement
the nominal precomputed control signals uj(t), u3(t),
in the usual manner,

u; (t) + Uré
ug(t) + uze (17)

U =

Uy =

with uj(t) and u}(t) being the (nominal) open
loop reference control inputs that would, ideally,
steer the ship along the nominal reference trajectory
(W*(t),S*(¢t), F*(t), L*(t)), provided the actual initial
conditions were precisely set at the nominal values and
no perturbations were ever present along the prescribed
path.

Is is easy to show that the linear system (15) is
controllable. 'This may be checked using the well
known controllability rank criterion for time-varying
linear systems of the form, £ = A(t) + B(t)u ,
¢ € R", given by (sec, for instance, Fliess, [4]),
rank [B(t), (A(t) — £ )B(1),...,(A(t) — £)"'B(1)] =

n where, in this case, we must take

[0 0 —59"(1‘.) —sin F*(t)

Al) = g 0 W(’)(t) cosfo"(t)
(00 o0 8
—c?s]:'(t) 0

B(t) = s"’j[;(t) (1) (18)
[ —rus(t) —ui(o)

3.3 A feedback control law for trajectory track-
ing error stabilization

Consider next a time-varying state coordinate transfor-
mation for zs, written in terms of a new state variable,
denoted by 05, which has a linearizing effect on the sys-
tem equations when the incremental state trajectories
are constrained to the manifold o5 = 0. Within this
context, consider also the following incremental state
feedback control law for 4,5 and ugs, given by

25 = —’U,; (t)'w& + kzl‘a Sin(]:’ (t))
—kyys cos(F*(t)) + o5
ws = LY(E)Ys — ka5 cos(F*(t)) — kyys sin(F' (1))
1 *
Ugs = m {ﬁ% + yuy(E) x

L (E)5 — ks cos(F* (t)) —kyys sin(F*(t))

— 1} ()5 + ko s sin(F* (t)) + ko F* (t)zs cos(F* (1))

—kyys cos(F* () + ky F* (t)ys sin(F* (t)) — ko0(0s) }
(19)

where k., k, and k, are taken to be strictly positive
design constants while 8(cs) is a nonlinear function of
the new state coordinate o, to be specified as a “high-
gain” function, or as a suitable “smooth” approxima-
tion to a “switch” function of the signum type, defined
on the basis of the values of o5 around the manifold
0s = 0. The variable o5 thus replaces the incremental
sway velocity 2.

After some simplifications, the closed loop transformed
system is given by the following set of time-varying
differential equations.

s = —kgzs—sin(F'(t))os
Ys = —kyy5+cos(f'(t))ag
y = — 1 [
I e o) el

- [u (6) + Buy(6) — i (t)c(t)] v
+ [ﬁ —k,sin®(F*(t)) — k, cos?(F* (t))] o5
+ [ (8 — k2) sin(F* () + (1 — 1) u3(6) cos(f'(t))] ket

- [ (B~ ky) cos(F* (1)) — (1 7) u3(®)sin(F* (t))] kym}
Ge = —ke(os) (20)

A rather natural choice of the design parameters and
involved functions is given by

0 (21)

g,
ke =k =85 doa) =55

where ¢ is a small, striclty positive, constant.

A Lyapunov stability theory argument shows that the
trajectories og(t) of the variable o5 globally exponen-
tially converge to zero. The closed loop linear time-
varying system is thus excited by an external Lz signal.
The time-varying eigenvalues of the linear part of the
system are given by

M o= A=-p
uj () + Bui (t) — yus(t)L* ()
(1= )ui(®)

As(t) (22)

1t is not difficult to show, in view of the relations (11)
and (14), that the linear subsystem eigenvalue, A3(t),
is bounded above by a strictly negative constant. Fur-
thermore, the closed loop linear system matrix has a



bounded norm and this norm has a continuous first or-
der time derivative. As a result, it follows from linear
systems theory (see Callier and Desoer [2]), that the
trajectories of the incremental states, describing the
closed loop behavior of the tracking errors, are glob-
ally exponentially stable to zero.

4 Simulation Results

Simulations were carried out for assessing the perfor-
mance of the designed feedback controller on the ship
model. Following [12], we chose a typical trajectory on
the (W, S)-plane, parametrized by time, and given by

W*(t) = 10sin(0.01 t) ; S°(t) = 10 (1 — cos(0.01 t))

The above set of parametric equations correspond to
a circumpherence of radius 10, centered at the point
(z,y) = (0,5). Figure 2 shows the results of the off-line
trajectory planning task. The graph for the orientation
angle F* was obtained by solving the differential equa-
tion for F in (11), with initial condition F*(to) = 0 and
taking W* (t), W* (), W*(t) and S*(t),S*(t),$*(t), as
given data. The corresponding nominal sway velocity
L£*(t) was directly computed using (11). The nomi-
nal, open loop, control signals u}(t) and u3(t) are also
shown in this figure.

We remark that, as it follows from (11) and the above
prescription for W*(t) and ' (t), that the periodic ref-
erence signal L' has indeed a small amplitude, of the
order of 0.1. Also, the reference solution for F~(t),
as obtained from (11), is given by a steadily growing,
slightly oscillatory, signal representing the naturally
growing orientation angle along the prescribed circu-
lar trajectory.

Figure 3 shows the closed loop controlled trajectory of
the ship in the (z,y) plane, along with the actual ori-
entation angle 9, the controlled sway velocity z and
the feedback control input signals. The following per-
turbed values were set for the required initial conditions
in the presented simulations.

I(to) =-1.0 3 y(to) =-1.0 ) Z(to) =0 5 ’lﬂ(to) =-1

In the simulations, the system parameters and the de-
sign parameters were taken to be,

058 ; B=007 ; k=007 ; k, =007
as

01 : @ = _ =

L3 8(os) [os+e @ € !

vy
ks

5 Conclusions

In this article we have proposed a feedback con-
trol scheme for trajectory tracking in a class of non-
differentially flat systems of the Liouvillian type. The
approach consists in first performing the necessary
off-line trajectory computations based on the partial
flatness of the system and inversion of the integro-
differential parametrization relating the flat variables
and the nonflat variables. The nature of the desired
trajectories, whether specified in terms of the flat or
nonflat variables, determines the degree of difficulty in
computing the required open loop trajectories for all
of the state variables and the corresponding nominal
(open loop) control inputs. Once the reference state
and control input trajectories are determined, as time
varying functions, a classical approximate linearization
approach may be used to devise an incremental (on
line) feedback controller which complements the nomi-
nal control inputs and suitably corrects the deviations,
due to modeling errors and external perturbations, of
the actual state trajectory with respect to the pre-
specified one.

Systematic controller design procedures are needed for
the regulation and tracking tasks of non-differentially
flat systems. Challenging nonflat mechanical and elec-
trical systems await for analytical treatment and the
proposal of reasonable and conceptually clear feedback
control solution schemes.
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Figure 1: Position variables in earth cartesian coordinates
and surge and sway velocities
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Figure 2: Open loop planned trajectories for the ship
variables
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Figure 3: Closed loop performance of the feedback con-

troller



