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Abstract

In this paper, the sliding mode control of a permanent
magnet (PM) stepper motor is addressed from the
perspective of differentially flat systems. A static and a
dynamic discontinuous feedback control schemes are
proposed. [mplementation results of these control
schemes on an experimental set-up are given to illustrate
the develapments. Both, the results of the single stepping
and multi-stepping cases are shown. In addition,
comparisons of the performances of the two sliding mode
control schemes with the performance of a feedback
linearization control scheme are given,

1 Introduction

Due to their inherent robustness properties and conceptual
simplicity, discontinuous feedback control schemes of the
sliding mode type, have enjoyed deserved attention from
researchers and practitioners. The fundamental results of
sliding mode control are found in the many books already
available on the subject. The interested reader is referred
1o the books by Utkin [1] and Zinober [2]. Sliding mode
control of nonlinear multivariable systems has been
addressed from different viewpoints. The differential
geometric approach to the design problem received the
attention of Sira-Ramirez {3). A different approach to
the multivariable sliding mode contro} problem for linear
systems was given by Fliess and Sira-Ramirez [4]. In this
approach, module theory is used in a special manner w
formulate and uncover the fundamental differential
algebraic nature of the problem. Sira-Ramirez [5]
addressed the problem of sliding mode control of
multivariable nonlinear systems, from the perspective of
linear differential algebra, for a special class of
linearizable systems.

In this article we propose the design of sliding mode
controllers for a permanent magnet stepper motor. The
design approach is based on the developed theory of
differentially Nat systems. Section 2 of this article

discusses the generalitics of multivariable sliding mode
controller design for differentinlly flat systems. Section 3
contains a brief overview of stepper motors as well as the
nonlinear model of the PM stepper motor. Section 4 deals with
the design of a static sliding mode regulation of a multivariable
pevmanent magnel stepper motor. Section 5 deals with the
design of a dynamic sliding mode controller for the stepper
motor. Section 6 discusses the implementation results of the
proposed control schemes. Both, the single step case and the
multi-step casc are treated. A bricf comparison of the
performance of the proposed control schemes with the
performance of a feedback linearization control scheme is also
provided. Finally section 7 contains the conclusion.

2 Sliding Mode Control of Differentially Flat
Systems

Flat systems were first introduced by Fliess and his co-workers
in [6] and further developed and characterized by Fliess et al.
[7]. Practical examples of some mechanical systems, such as
the truck and the trailer, the jumping robot, and the crane were
presented in {7]. Levine et al. [8] used the flatness property of
the magnetic levitation model of a beam to design a nonlinear
control scheme for its positioning. Martin and Rouchon [9])
proposed a sampling coatrol strategy for flat systems; this
strategy was applied to induction motors. Rothfub et al. [10]
exploited the flatness of a chemical reactor model to design a
linearizing quasi-static feedback controlier for it.

Difterentially flat systems constitute a widespread class of
dynamic  systems which represent the simplest possible
extension of controllable linear systems to the nonlinear
systems domain [S]. Flat systems enjoy the property of
possessing a finite set of differentially independent outputs
called linearizing outputs. Flat systems are thus dynamic
systems which are linearizable to a controflable linear system
by means of endogenous feedback, ie., one that does not
require external variables to the system to be completely
defined.

Since the control inputs to the system wu are differential
functions of the linearizing outputs y , then one may impose



on the highest derivatives of such linearizing output
components, which appear in the control input
components expressions, a particular linear telation
involving only smaller order derivatives of the same
output component. One immediately obtains the required
linearizing controller expression it terms of the involved
lingarizing outputs.

In the following, we consider the design of a
multivariable sliding mode controller for a permanent
magnet stepper motor. The system is first shown to be
differcatially Nat with linearizing outputs given by
physically meaningful variables constituted by a
combination of the cutrents in phases A and B of the
motor, and the rotor angular position of the shaft of the
motor. A static sliding mode controller is then designed
which stabilizes the system to the required equilibrium
point. A dynamic sliding mode controller design is also
carried out and comparisons with the static controller are
made, on the basis of implementation results.

3 The Stepper Motor System

3.1 A brief overview of stepper motors

In receut years, the rapid growth of digital electronics has
indirectly influenced the development of the stepper
motor technology [11]. Stepper motors are now widely
used in numerous motion-control applications such as:
robots, printers, process confrol systems, index table for
autoruatic assembly machines, etc.

When operated in open loop mode, stepper motors are
generally oscillatory in their positional response, Driving
a high inertia load at low speeds aggravates the
oscillations of the motor shaft about the equitibrium
position.

Over the years, many control algorithms that can be used
to improve the performance of stepper motors have been
examined. Zribi and Chiasson [12] developed an exact
feedback linearization control method for controiling a
permanent magnet stepper motor. Bodson and Chiasson
[13] presented a control scheme based on feedback
linearization with adaptive rules that can be used to
estimate the parameters of the system. Speagle and
Dawson [14] developed an adaptive tracking controller
for stepper motors.

3.2 Modecl of the PM stepper motor
Consider the Jollowing model of a permanent magnet
stepper motor [12]
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where, iy is the current in winding A. i is the current in
winding B, @ is the angular displacement of the shaft of

the motor, @ is the angular velocity of the shaft of the motor,
v, is the voltage across the windings of phase A, and vp is the
voltage across the windings of phase B. Also, M, is the
number of rotar teeth, J is the rotar and load inentia, B is the
viscous friction cocfVicient, I and R are the inductance and the
resistance of each phase winding, and K, is the motor torque
(back-emf) constant.

Equations (1) which are used to described the stepper motor
model, are highly nonlinear. A nonlinear transformation,
known as the Direct-Quadrature (DQ) transformation [12] can
be used to transform these equations inio a torm which is more
suitable for designing nonlinear controllers. The DQ
transformation is defined as:
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In addition, define the new inputs as:
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where vy is the direct voltage, vq is the quadrature voltage, iy
is the direct current, ig is the quadrature current.

In terms of these new inputs and state variables, the
transformed mode} of the stepper motor can be written as,
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Then, equations (2) can be written as,
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where,
Si=—kx + ke
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1t is desired that the rotor angular position tracks a given
constant reference position €. It is also desired that the direct
current tracks a given constant reference direct current, 14, .
‘Thercfore, the Jinearizing as well as the controlled outputs of
the system are such,
e 24 I J1]

Y2 X,
The stepper motor system is differentially flat with linearizing
output coordinates givenby y7 =x7 and y2=x4 . This is the



case because all variables in the sysiem can be written as
differential functions of the linearizing outputs such that,
X =N
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The control actions can be expressed vsing the linearizing
output coordinates such that,
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From the expressions of wy and u2 it follows that the
linearized equations for the system are simply given by
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In the following. a multivariable sliding mode controller
which asymptotically regulates the output variables
towards their desired equilibrivm positions is proposed.

4 Static Sliding Mode Controller Design for a

Stepper Motor

The static sliding mode control design entitles specifying
the auxiliary, endogenous, control input variables vy and
vy as sliding mode feedback control laws, such that the
forced cvolution of the linearized  variables
asymptotically converge towards their desired positions.
Due (o the physical nature of the actual control input
variables u#; and w2, representing voltage signals for
which a switching strategy is entirely feasible, we may
proceed to specify a static sliding mode controbler.

A sliding surface for the tracking of the linearizing
output coordinate 3 towards its equilibrium point /gy .
is constituted by the direct current stabilization error
given by,

s1=viRldd=x1-ldid

For the regulation of the second linearizing coordinate,
y2 = x4, a sliding surface expression is proposed which
depicts a desired second order dynamic response for the
controfled angular position y2 = x4, towards its desired
equilibrivm point x4 = 67. We propose that,
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where o, and a, are positive design parameters.

Denote "sgn” for the signum function. To ensure that the
linearizing output coordinates y; and y2 will converge to
144 and 64 respectively, in a finite time, we impose the
following sliding mode controlled dynamics on the
evolution of the sliding surface coordinate functions s
and 52,

$, =—W, sgnls;) 4)
&,=—W,sgn(s,) (5}
where #) and I are positive design parameters. Thus,
the sliding mode dynamics in (4)-(5) yield the following

required dynamics of the linearizing output coordinates y;
and »).
3 =—W, sgn(s,) (6)
¥+, + @y, =W, sen(s;)
The first closed loop dynamics in (6) guarantees finite time
reachability of the desired motor cutrent equilibrium value /g
The second imposed dynamics in (6) implies a second order
cantrolled response for the angular position xy. Note that since
52 is driven to zero in finite time, the lincarizing output v =x4
is also governed, after such a finite amount of time, by the
second order dynamics 3, + “n."f"az()’z _9,)): 0.

Hence, one immediately obtains the auxiliary control inputs vy
and v as,
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‘Therefore, the required actual controls inputs u; and u3,
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The obtained static sliding mode controllers can be expressed
in terms of the original state variables of the system by simply
substituting the linearizing coordinates y; and y7, and their
time derivatives, in terms of the original state variables. After
some straightforward algebraic manipuiations we obtain the
lfollowing expressions for the static discontinuous feedback
controllers,
u, =—W, sgn(s; )+ kox) —kcxyx, ™

w= kX Hhex,xs + koxy + ko, —oyx,
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The previous analysis allows us to state the following theorem.
Theorem |:
The discontinuous static feedback controller (7) when applied
to the stepper motor system (3), asynptotically stabilizes the
outputs of the system to their desired values.

In order to alleviate the chattering problem, the next section
illustrates the design of a dynamic sliding mode controller for
the PM stepper motor.

5 Dynamic Sliding Mode Controller Design for a
Stepper Motor

From simulation results, chattering is observed when the
sliding mode controller discussed in the previous section is
used. This chattering is due to the basic assumption in variable
structure control that control can be switched from one value
to another at any moment and with almost zero time delay.
However, in practical systems, it is not easy to achieve such
switching control. This is the case because of two reasons.
Firstly, there are time delays due to computations of the
control actions. Secondly, there are physical limitations on the
actuators used in the plants: most of the actuators contain coils
that have rather high inductance values, hence input cutrents to
these actuators cannot be switched at infinitely fast rates. It
should also be mentioned that at steady state, chattering might
cause oscillations about the desired equilibrium point of the
system. In order to attenuate the chattering induced on the



linearizing coordinates y; and y) by the bang-bang
nature of the proposed static sliding mode control signals
uy and u), we propose a dynamic sliding mode control
scheme.

A sliding surface for the tracking of the linearizing
output coordinate y; towards its equilibrium point /4.
is is chosen as,

o, =¥ Ay, = D)y =—kx ke +u + 2 (x = 1)
where Iy is the desired value of 14 and &' is a positive
design parameter.

For the regulation of the second linearizing coordinate,
»2 = x4. a sliding surface expression is proposed which
depicts a desired third order dynamic response for the
controlled angular position y2 = x4, towards its desired
equilibrium point x4 = 7. We propose,
o= J’&” +a, +ary +ay(y, - 6,)

=—kkyxy — kykoxxy — kokyx, +hyu,

o — kg hy —kexs)+aiatay(s —0,)

where £y is the desired value of @=x4. The constants o',
o, and «'; are chosen swch that the polynomial
s, sPHod,s+al'y is Hurwitz,

To ensure that the linearizing output coordinates )7 and
v2 will converge to Igz and 0y respectively, in a finite
time, we impose the following sliding mode controlled
dynamics on the ecvolution of the sliding surface
coordinate functions oy and o,

G, =—W/sgu(o}

a,=—W sgn(o,)

where W;' and W' are positive design parameters.
Because of these dynamics, o, and ¢, will converge to
zero  in linite  time. Hence, after finite time
W= 1) and y‘z” =—aji, -y, —a (¥, —0,)-
it should be noted that because of the choice of X, o, o,
oy, we are guaranteed that yj=x;=/g converges to /gy
and yo=x,=0 convergesto 6,.

After some manipulations, we obtain the following
control scheme,
6, ==/, =A'(f, +u,)—Wsgn(a;)
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Equations (8) canstitute the equations for a dynamic
sliding mode feedback controller. Such a controller is
then characterized by the solutions of the underlying
differential cquations for the conirol inputs w7 and w2 .
Indeed, the previous equations may be immediately
rewritten as titne-varying nonfinear ordinary differential
equations, with discontinuous right hand side, for the
otiginal control inputs w ] and u).

The following theorem can now be stated.

Theorem 2:

The dynamic feedback controller (8) when applied to the
stepper motor system (3), asymptotically stabilizes the
outputs of the system to their desired values.

6 Implementation Results of The Sliding Mode
Controllers

The designed controllers are implemented using the
experimental set-up depicted in Fig. 1. The system consists of a
PM stepper motor, different loads to be attached to the shaft of
the motor, drive circuitry, two current sensors, an optical
encoder, and a controller board. The controllers were
implemented using o digital signal processor (DSP).

Fig. ] PM stepper motor system

The block diagram representation of the overall system is
shown in Fig. 2.
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Fig. 2 Block diagram of the overall system

The motor used in the implementation is a unipolar hybrid
penmanent magnet stepper mator (Vexta, model PH268-22B).
The motor has a shaft at both of its ends. Therefore, the
attachment of different loads and an optical encoder to the
shaft is simple. An optical encoder is used fo measuce the
position of the PM stepper motor shaft. Two cutrent sensors
are also used to measure the currents supplied to the two coils
of the PM stepper motor. The measured data is then fed back to
the controller board for processing. An observer is used to
estimate the angular velocity of the shaft of the motor [15]. The
brain of the system is a digital signal processor (the DS1102
floating point processor board which is based on Texas
Instrument TMS320C31 floating point DSP). The least square
estimation technique was vsed to estimate the parameters of the
system. It was found that these parameters are such: R =
19.1388Q, L = 40 mH, K= 0.1349 Nnv/A, J= 4.1295 x 1o
kgm?, B= 0.0013 Nin/rad/sec and N, =50.

The objective of the implementation is for the shaft of the
motor to rotate by one step (one step = 1.8°=0.03142 radians)
as fast as possible and with the Jeast amount of overshoot
(critically damped response). Later on, we will briefly discuss
the multi-stepping case. Such a behavior is a typical
representation of fast and accurate positioning for robotic
applications.

To simulate the different loads experienced by the stepper
motor, different weights are attached to the shaft of the motor
by an extension arm of about 6 cm. For this implementation, a
wide range of loads are used to simulate different foads on the
motor. The results shown in this paper correspond to a load of
520 grams.



The design parameters for the static controller are chosen
such that W;=1000, #p=7x)0". a;=550 and ap=
7.5x10'. The design parameters for the dynamic
controller are chosen such that IV,=2000, W, =5.5x10,
A=480 and o =1250, a=47x10%, ¢ =5.2x10".

The state variables of the system with the sfatic sliding
mode controller  are shown in figure 3. The state
variables of the system with the dynamic sliding mode
controller are shown in figure 5. The state variables of the
system with a feedback linearization controller
(cancellation of the nonlinearities of the system and
placement of the closed loop poles using the pole
placement technique) are shown in Figure 7.

The states are seen to converge towards their
corresponding equilibrium points when the different
conirol schiemes are used,

It can been scen from these figures that the angular
position of the shafl of the motor converges towards its
desired value (1.8°=0.03142 radians) in about 0.1 sec. In
addition, the response of the angular position of the shaft
of the motor is critically damped. The currents in coils A
and B, the voltages v, , vp. as well as the sliding surfaces
are also shown in figure 4 (for the static controller) and
figure 6 (for the dynamic controller). it should be noted
that becanse of the hardwarc constraints, the input
voltages v, and vp are restricted to the range of 0 to 12
volts, when the static controller is used, the control inputs
v and vp are seen to exhibit a discontinuous behavior of
the bang-bang type caused by the existence, in  linite
time, of a sliding regime on the intersection of the
proposed stabilizing sliding surfaces 57 = 0 und 52 = 0.
‘The controtled angular position trajectory x4, is scen to
be quite smooth, due to the fact that a third order
integration separates the bang-bang control input 2
from the angular position x.s. However, chattering is quite
strong on the regulated motor curtents, since only one
order of integration separates the bang-bang control input
uy from the regulated variable x; . When the dynamic
sliding mode controller is used, the chattering is very
much reduced.

It turns out that the best performance is ebtained when the
dynamic sliding mode controller is used. This is the case
because the chattcring is tremendously reduced. The
performance of the system is quite good when the
feedback linearization controller is used. However, the
feedback linearization controller his the inherent problem
of not being very robust to changes in the parameters of
the system.

Figures 8 and 9 show the state variables of the system
with the sliding mode controllers for the multi-stepping
case. In the implementation, the shaft of the motor is
commanded to move by 10 steps. It can be seen. from
these two figures that the sliding mode controller gives 2
faster response than the dynamic sliding mode controller.
However, the chattering is reduced when the dynamic
controlier is used.

7 Conclusions

In this article we have used multivariable sliding mode control
1o control a PM stepper motor. Sliding mode controller design
was shown to be greatly facilitated by resorting to the
differential flatness of the system. The design of a static and a
dynamic sliding made controllers for a PM stepper motor is
discussed. The results of the implementation of the proposed
control scheres on an experimental setup are outlined. These
results shows that the proposed controllers work very well for
the single step and the multi-stepping cases.
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Fig. 3 Response of the motor when the static sliding
control is used (single step case).
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Fig. 4 Switching surfaces and control actions when the Fig. 7 Response of the motor when the feedback
static sliding mode controller is used (single step case). linearization controller is used (single step case).
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Fig. 5 Response of the motor when the dynamic sliding
mode control is used (single step case). Fig. 8 Response of the motor when the static sliding modc
control is used (multi-step case).
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Fig. 6 Switching surfaces and control actions when the Fig. 9 Response of the motor when the dynamic sliding
dynawmic Sliding mode contro) is used (single step case). mode control is used (multi-step case).



