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Abstract

A feedback regulation scheme, based on an off-line tra-
jectory planning, is proposed for the terminal descent
trajectory of a vertically controlled spacecraft attempt-
ing a soft landing maneuver on the surface of a planet
with no atmosphere. The approach is based on the
*Liouvillian”, character of the system, i.e., it has a de-
fect regarding the flatness property of the spacecraft
mass variable. This fact allows off-line trajectory plan-
ning controlled by a linear, time-varying, state feed-
back regulator complementing an ideal (nominal) open
loop controller. Simulation results demonstrating the
robustness of the approach are presented.

1 Introduction

In this article, a feedback regulation scheme is devel-
oped which allows for the regulation of a terminal de-
scent maneuver of a vertically controlled spacecraft.
The approach is based on an off-line trajectory plan-
ning which exploits the fact that the vertically con-
trolled spacecraft model is “Liouvillian”, i.e., it ex-
hibits a defect regarding the flatness of the total space-
craft mass variable. In fact, the spacecraft height posi-
tion dynamics is shown to satisfy a scalar linear time-
varying differential equation whose defining parameter
(i.e., eigenvalue) is constituted by a differential function
of the flat variable. In other words, the spacecraft po-
sition dynamics is expressible in terms of guadratures
of the flat output and of a finite number of ite time
derivatives. This fact considerably facilitates the feed-
back controller design task by allowing an off-line com-
putation of the ideal open loop control which regulates
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the spacecraft towards a constant hovering equilibrium
position. As usual, from such a small height hovering
position the final touchdown maneuver can be safely
accomplished with a shut-off of the main thruster. The
approach therefore results in a linear, time varying,
state feedback regulator complementing the ideal, off-
line computed, open loop controller.

Liouvillian systems oconstitute the simplest extension
of differentially flat systems (see the work of Prof. M.
Fliess and his colleages [6]) into the area of systems
which are not linearizable by means of endogenous feed-
back. The class of Liouvillian systems constitutes a
subclass of non-flat systems with an identifiable flat
subsystem of maximal dimension l.e., they are nonflat
systems of lowest defect. A nonflat system is said to be
Liouvillian, or integrable by quadratures, if the variables
not belonging to the flat subsystem are expressible as
elementary integrations of the flat outputs and a finite
number of their time derivatives. This class of systems
has been recently introduced by Chelouah in [4], from
the perspective of Differential Galois theory in the con-
text of Piccard-Vessiot extensions of differentially flat
Belds.

Section 2 is devoted to present the vertically controlled
spacecraft model and the corresponding analysis de-
picting the difficulties inherent in the regulation of such
a system. In this section we also demonstrate the Liou-
villian character of such a controlled system. Section 3
derives the feedback control scheme and proposes the
linearization-based feedback regulator accomplishing a
smooth landing maneuver stably guiding the spacecraft
towards the final hovering position. Section 4 presents
some gimulation results testing the robustness of the
proposed controller.
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2 A Landing Model for a Vertically Controlled
Spacecraft

2.1 A non-differentially fiat system

Consider the nonlinear model describing the motion
and mass behaviour, of a thrust controlled vehicle at-
tempting a vertically regulated landing on the surface
of a planet of constant gravity acceleration g and neg-
ligible atmoepheric resistance (see 7], [5] and [1]).
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where x; is the position (beigth) on the vertical axis,
positively oriented downwards (l.e., z; < 0 for actual
positive heigth), 23 is the downwards velocity and zy
represents the combined mass of the vehicle and the
resldual fuel (See Figure 1). The control input is repre-
sented by the controlled rate of ejection per unit time,
denoted by 4. The parameter ¢ is the relative ejec-
tion velocity. The constant « is a positive parameter
such that the product ca is the maximum thrust of
the braking engine. The control input u is restricted
to take values on the Interval [0,1]. This means that
the spacecraft cannot accelerate fowards the surface of
the planet and the maximum downward acceleration is
represented by the free fall condition u = 0.

It is quite easy to show that the above system is not lin-
earizable by means of static state feedback and hence,
according to the results of Charlet et al, [3], it is not
linearizable by means of dynamical state feedback el-
ther. As a result, the system is not differentially flat

(6]-

Indeed, consider the following locally invertible state
coordinate transformation, valid away from the singu-
larity line zg = 0,
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The transformed system clearly exhibits an uncontrol-
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lable coordinate given by z3.
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2.2 The soft landing spacecraft as a Liouvillian
system

The system (1)therefore has a defect. In fact, the
largest flat subsystem is represented by the variable

Z3.

The flat output of the largest flat subsystem of the
vertically controlled spacecraft is, therefore, given by
the variable mass coordinate xg, denoted byF. The
height variable z;, that we denote by W, and the down-
wards velocity za, represent the non-flat outputs. How-
ever, the height coordinate W may be represented by a
quadrature of a differential function of the flat output
F.

The following integro-differential parametrization Is
readily obtained from the system equations (1), and
the flatness of the mass variable F.

F F
zs = F u=—; H W=g+aF i

2n=W ; =W (4)

The system Is Liouvillian since the non-flat output W
is expressibe in terms of quadratures of a differential
function of F, specifically, a function involving F and
F. Notice, however, that in this particular case, the
flat variable F' can also be obtained by an elementary
quadrature of the non-flat variable W

F=—%(g—W)F )

2.3 Analysis of the diferential-integral

parametrization

The preceeding integro-differential parametrization (4)
contains useful information regarding the relations be-
tween the possible static equilibrium values for some of
the variables and it also contains the properties of the
system variables.

For instance, if W = W is a given nonzero constant,
which is the case of a hovering condition above the
ground, then W = W = 0 and from (4), the vari-
able F is exponentially asymptotically stable to zero
with eigenvalue —g/a < 0. This means that the space-
craft consumes all the fuel mass, and its own “dead”
mass tool, in order to keep the constant equilibrium
condition of the height variable W. The system does
not exhibit a physically meaningful equilibrium point
for the flat variable F, when the non-flat output W is
held constant with the descent velocity being identi-
cally zero.

A free fall condition is given by W =g. This implies
that ¥ = 0 i.e., the spacecraft mass remains constant,
and the control input i8 u = 0 as read from (4). On
the other hand, notice that the gravity acceleration g is
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necessarily larger than W in a controlled descent. Oth-
erwise, the spacecraft sncresses its mass which is phisi-
cally impoasible. For persistently controlled descents
{(u(t) # 0 on any open interval of time) one may even
assume that the quantity — (y — W(t)) /a is bounded
away from zero and that it is smaller than a strictly neg-
ative constant —u. As a result, the mass variable evo-
lution F(2) is strictly decreasing, and, moreover, from
linear systems theory resluts (see Calier and Desoer [2],
Ch. 7), it is ezponentially asymptotically stable to zevo.
Notice, however, that, pbsically speaking, much before
F (%) is close to zero, the fuel mass has been completely
depleted and the spacecraft mass becomes constant.
Thus, F(t) has a physical lower bound represented by
the “dead mass” of the spacecraft.

3 A Feedback Controller based on Off-line
Trajectory Planning and Flatneas

3.1 Trajectory planning and the open loop con-
troller

We assume that the spacecraft is initially located at
a certain hovering height, W (¢p), in a landing site ex-
ploration maneuver. Qur control problem consists in
achieving a controlled descent that softly brings the
spacecraft from the intial heigth W(ty) = W) to a small
final heigth W(T) = Wy < 0, in a finite amount of
time T — ¢9. The control input should not saturate to
any of its extremal values, 0 or 1, since this means ei-
ther free fall or an undesired vertical ascent moving the
spacecraft away from the target equilibrium position.
The initial mass of the spacecraft, at the instant #;, is
assumed to be known and given by F(tg) = F.

We propose a suitable planned trajectory for the non-
flat output W, which we denote by W*(2) satisfying the
initial and final conditions, W*(to) = Wp and W*(T) =
Wr and our previous assumption —(g — W*({t)}/a <
—p. This may be achieved by specifying a suitable, suf-
ficiently amooth, polynomial spline function 9(¢, o, T),
satisfying the conditions

{'/’(‘o.fo.T) 0 ;£ vt to, Thzso
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The planned trajectory (6) impoees a finite number
of initial and final time derivatives of the prescribed
“polynomial spline” (2, &y, T). These conditions guar-
antee a sufficiently smooth departure from the initial
hovering equilibrium and a suffcieatly smooth arrival
at the final hovering position. The required planned

trajectory would then be given by,
W*(t) = Fo +%(t,t0, T) (Wr — W) M

The planned trajectory (7) is used in solving the follow-
ing liear time-varying ordinary differential equation
for the flat mass trajectory ¥*(t)

PO =-2(o-W©)F® ; Fe)=F ©

The solution of (7) is next used in the off-line com-
putation of the ideal (open-loop) control input u*(t)
achleving the desired heigth transfer under ideal con-
ditions. The open loop control, according to (4), is
given by

wi) = (g -W@) e @

3.2 A feedback controller based on approximate
linearization

Eviently the open loop controller (9) cannot be used
alone in an actual descent maneuver due to its lack
of robustness with respect to initial and on-line per-
turbations. The traditional solution idea is then to
compensate for the small deviations around the ideal
trajectories F*(t), W*(¢). This is acoompished on the
basis of linear (time-varying) feedback computed from
an approximately linearized model.

We define, 15 = 1, — W*(2), 225 = 23 — W*(t) and
234 = 23 — F*(t). The incremental control input is
defined by the relation u = u*(t) + us.

A Jacobian linearization of the system (1), around the

planned trajectories, is given by
£15 = Zs
. _ f{e- W) [ _oa
e = (—r(:) ) o (F-(t)) “
#2s = —ous (10)

A suitable linear time-varying feedback controller for
the linearized system (10) would be given by

us = F;g) [(g _F?(,;)(t)) 35 + 2wnTas

+uwizis + Aa:u] (12)

where ( and w, and A are positive design constants
representing the positive damping coefficient and the
natural frequency of the time-invariant closed loop lin-
earized dynamics of the incremental heigth and velocity
variables.
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The closed loop system is then given by

f15 = Zs

B2 = —2waPas —wiT1s — ATss

. _ 1 e

i35 = p ()\F‘(t) +g-W (t)) Zys

= [@] (2(&)"2:5 +w,’,xu) (12)

The incremental variables 25 and za; are the state
variables of a time-invariant linear system with elgen-
values placed at will in the open left portion of the
complex plane. This system is excited by the state
variable 235, which we may show is an £; signal which
converges to zero. This implies that z,5 and 35 are
asymptotically stable to zero. In order to show that 234
is an £ signal we proceed as follows. According to the
assumption that —(g — W*(t))/a < —pu, and the fact
that X is a positive constant, it follows that the quan-
tity —(AF*(8) + ¢ — W*(t))/a is also striclty smaller
than —u < 0, for all ¢. Since the quantity F*(t) s ex-
ponentially stable to zero, the second summand In the
last of equation (12) represents a forcing input signal
which decays to zero as ¢ —+ co. It follows from linear
systems theory (see [2] ) that the incremental variable
234 Is an £, signal which is also asymptotically stable
to zero. So, In fact, the linear system describing the
linearized flat subsystem (2,5, 234) is excited by an £3
signal which decays to zero. The linearized closed loop
gystem (12) is then asymptotically stable to zero for
any given set of incremental initial conditions.

The proposed feedback controller is given by
u = u'(t)+us(t)= (‘#) (F*(t) +23)
L@ [

pos 2AwnZas + w3 aT18 + Azu] (13)

4 Simulation Results

Simulations were performed to test the effectiveness,
and robustness, of the proposed feedback regulation
scheme (13).

We prescribed the planned trajectory W*(t), for the
non-flat output z,, by means of the following polyno-
mial spline,
w* (‘) =Wo+ ‘/’(t’ to, T)(WT - Wu) (14)
with
_ ft—to ‘ t—to
st = (7=5) [h-n(z2%)

"""(1"_1) - (T cu)
) (1) o

with
=252; r; = 1050 ; rg = 1800; ry = 1575;
rs =700; e — 126

The initial surveying hovering heigth was set to be
W, = —700 m and the final hovering equilibrium
Wr = —1 m. The prescribed trajectory W*(t) has
ita first four time derivatives equal to zero at the ini-
tial time ¢ = ¢, and its first five time derivatives equal
to zero at the final time ¢ = 7', This guarantees a
landing maneuver with a sufficiently smooth departure
and arrival features. The initial mass was set to be
Fo = 1500 Kg. The parameters defining the system
model were set to be

e=50Kg/s ; a=200m/s ; g =163 m/d’

Figure 2 displays the results of the off-line compu-
tations represented by the solution of the differential
equation (8) for the flat mass variable F™(t) and the
calculation of the open loop control. The ideal non-flat
output trajectory W*(t), together with the computed
nonminal mass trajectory F*(t), in turn allows for the
computation of the ideal open loop control policy u®(t)
from the expression (9). The time evolution of all these
ideal descent maneuver variable are shown in Figure
2, along with the corresponding ideal vertical velocity
W‘ (#) and ideal vertical acceleration W*(s).

The controller parameters were set 80 a8 to obtain real
closed loop eigenvalues of the controlled system

{=1; wy=04; A=08

Figure 3 depicts the performance of the feedback con-
trol policy (13) when significant initial setting errors
of the Initial surveying hovering height are included.
As depicted in the simulations, the controller manages
to reset the spacecraft position and downward velocity
to the prescribed initial values of the planned landing
maneuver.

5 Conclusions

A trajectory planning approach, has been proposed for
the feedback regulation of a soft landing maneuver in a
partially differentially flat vertically controlled space-
craft system. The approach is allowed by the Liou-
villian character of the controlled model. This feature
allows for an off-line computation of all relevant signals
required for the trajectory planning control scheme.
The off-line computations include the calculation of the
non flat variable evolution which is in correspondance
with the given flat output trajectory. This requires
the solution of a linear time-varying differential equa-
tion with appropriate initial data. The off-line compu-
tations also Include that calculation of the open loop
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control input signal in terms of the planned flat output
trajectory and the computed non-flat variable trajec-
tory, represented by the spacecraft height. The open
loop control would perform a smooth descent under
ideal, unperturbed, flight conditions and exact initial
settings. The proposed feedbak controller uses the off-
line computed open loop control signal complemented
with a linearization based feedback controller provid-
ing the necessary on-line correction maneuvers. The
incremental control input policy, which is just a propor-
tional derivative feedback controller with time-varying
compensation terms, was shown to asymptotically sta-
bilize the resulting linearized model describing the de-
viations from the off-line computed ideal descent tra-
Jectory. The performance of the controller was satisfac-
torily tested using digital computer simulations which
included initial errors with respect to the planned tra-
Jectory initial setting values.

Several extensions are possible regarding the proposed
approach. The first one would be to include a more
general spacecraft model considering lateral and for-
ward motions over the landing horizontal plane. An-
other possibility is represented by suitably combining
the presented approach with an optimal path scheme
guided by an optimal fuel expenditure, or equivalently
by a minimum time descent, requirement.
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Figure 1: A vertically controlled spacecraft.
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Figure 2: Open loop trajectory planning signals
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Figure 3: Closed loop performance of the off-line com-
puted plus linearization-based controller,
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