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Abstract

A feedback regulation scheme is presented for a wide
range of horizontal and vertical displacement maneu-
vers on a simplified longitudinal model of a helicopter
system. The approach is based on the “Liouvillian”
character of the helicopter model, rather than its dif-
ferential flatness, thus requiring only a static, though
time-varying, state feedback controller which tracks an
off-line planned trajectory planning for the attitude an-
gle reference signal computed in terms of the desired
horizontal and vertical displacements. The controller
performance is evaluated through digital computer sim-
ulations which include initial setting errors and an un-
modelled mid course wind gust perturbation of signifi-
cant magnitude.

1 Imtroduction

In this article, a feedback regulation scheme is proposed
which accomplishes a wide range of horizontal and ver-
tical displacement maneuvers for a six dimensional lon-
gitudinal mode! of a helicopter system, as developed in
[1]. The studied model turns out to be a Liouvillion
system, Le. it contains a flat subsystem of dimension
smaller than the dimension of the overall system. The
flat outputs completely determine the rest of the sys-
tem variables, which we address as the remaining vari-
ables, up to elementary quadratures (see [2]).

The Liouvillian character of the system allows for an
oft-line trajectory planning for the attitude angle, com-
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puted on the basis of the the desired horizontal and
vertical displacements. The feedback controller is then
specified on the basis of the ideal (nominal) open loop
control complemented with an appraximate lineariza-
tion based controller.

The longitudinal dynamics model of the helicopter
adopted here is also differentially flat (see the work of
Fliess [3]), and it can be exactly linearized by means
of dynamical state feedback as already done in [5). The
main difference between our Liouvillian based approach
and one entirely based on the differential flatness of the
sultably extended model, is that the off-line computa-
tion needed for the ideal open loop control involves
the off-line solution of a second order nonlinear differ-
ential equation. The flatness based approach, on the
other hand, would not require such an off-line calcula-
tion, but its associated burden is instead transfered to
the on-line solution of a second order differential equa-
tion representing the dynamical feedback controller.
Our controller, on the other hand is linear and static,
though time-varying, and perhaps simpler in nature
than the one we would have obtained based on the ex-
act linearization approach.

Section 2 presents a longitudinal model for the heli-
copter dynamics as presented in [4] and some pertinent
physical assumptions. Section 3 contains a brief in-
troduction to Liouvillian systems and shows that the
adopted helicopter model is Liouvillian. A Jinear time-
varying controller is derived guaranteeing robustness
to the off-line computed nominal control input. In Sec-
tion 4, a simulation test is performed for the closed loop
system. The conclusions and proposals for further re-
search are presented in the last section.
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2 A Simplified Model for a Helicopter System

We consider the following sct of simplified second order
differentlal equations for the longitudinal dynamics of
the helicopter, shown in Figure 1.

1 1
3 = —ﬁalnﬂul—ﬁcos&n
§ = g—%cosﬂul+:—{sin0uq
§ = Lu, (1)

where = denotes the forward position of the rotorcraft,
y ita vertical heigth and @ is the attitude angle. M is
the helicopter mass while L = I) /i,y with I, being the
distance between the rotor hub and the fusselage center
of mass and i,, is a moment of inertia.

2.1 Some physically plausible assumptions
Motivated by simple equilibrium considerations for a
null horizontal displacement, we assume that the fol-
lowing conditions are valid for any given maneuver

(ﬂ_ﬁ)mﬂa—ﬁskw)p)o : _;<9<; (2)

where i is a strictly positive constant.

‘We also assume that u; is a bounded control input and
that
| (9—§)sin@+ Zcosb |< » (3)

for a strictly positive constant .

A reasonable practical assumption on the magnitude of
the rate of change of the control input 4; is given by
the condition

i [<e @

3 Regulation of the Helicopter Model via
Trajectory Planning

3.1 The helicopter model as a Liouvillian sys-
tem

The helicopter model (1), although being differentially
fiat may also be regarded as a Liouvillian system, with
the flat subsystem beling represented by the state vari-
ables (#,0,y,y). The “fiat” outputs for this subsystem
are given by the attitude angle # and by the vertical
displacement y, which we denote by F and R, respec-
tively. The following partial differential parameteriza-
tion of the system variables allows for some elementary
equilibrium analysis and also establishes the main fea-
tures of the system to be controlled

¢ = F; 6=Fiﬂc=%; v=R;j=R

w = %,(g+ LF—MainF—R) (5)

The “remaining” system variables, represented by the
horizontal displacement variables (z, £), are expressible
in terms of quadratures of the proposed flat outputs F
and R and its second order time derivatives F, k. In-
deed, from (1) and the previous considerations, we ob-
tain, modulo initial conditions and specific integration
limits,

z = —//tanF(g+%sinF—ﬁ)dadt

1 -

Thus, system (1) qualifies as a Liouvillian system with
flat subsystem outputs given by F' and R. The zero
dynamics corresponding to a resting hovering position,
characterized by = constant, y = constant, is given,
according to (1), by the following dynamics

F =_MgLsinF 4]

The zero dynamics (7) represents a locally stable oscil-
latory system with equilibria located at the origin and,
also, at attitude angles of the form, ¥ = +kx ; k =
1,2,... . The system is hence weakly minimum phase
with vespect to the horizontal and vertical coordinates
z, y, taken ag the system outputs.

3.2 Off-line trajectory planning

Suppose that a desired displacement maneuver is spec-
ified by sufficiently smooth trajectories z*(¢) and y*(¢)
for the horizontal and vertical position variables z and
y. The desired maneuver is to take place in given, fi-
nite, but independent amounts of time T}y and Tyy.
The specified trajectories are supposed to take the
helicopter from the initial equilibrium hovering posi-
tion, located at (2(tni), ¥(fei)), on an arbitrary verti-
cal plane, towards a final hovering horizontal and ver-
tical coordinate values, specified as (2(Taz),y(Tes))-
The displacement maneuveres may include an arbitrary
number of intermediate resting equilibria or hovering
positions as well ag8 “backing-ups”, advancements, and
ascents and descents of arbitrary lengths and durations.
The time evolution of the “off-line” planned trajec-
tories z*(t) , y*(f) are also assumed to start with a
sufficient number of zero initial and final time deriva-
tives (with similar features for intermediate resting po-
sitiona). This last requirement guarantees smooth de-
partures from initial or intermediate points as well as
smooth arrivals at intermediate equilibria, or at final
resting positions.

3.3 A trajectory tracking feedback controller
The partial differential fiatness properties of the vari-
ables 8 = F and y = R, allows one to express the
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control inputs u, and u; as the open loop control laws

- F
uy = % (g—R+ %sinF) and uz = 7 (8)
respectively. Therefore, if a desired displacement ma-
neuver is given by z*(¢), y*(t) then, the corresponding
attitude angular trajectory may be computed by find-
ing the solution F*(t) of the following nonlinear second
order differential equation, obtained from the horizon-
tal displacement dynamics,

F = _LM[z*(t)cos F* + (g —§ (t))sinF*] (9)

with initial conditions in complete accordance with the
desired maneuver.

The “off-line” computed attitude angle trajectory
F (t), generated by the differential equation (9), is
to be used in an “on-line” feedback contro! scheme
obtained from the following approximate linearization
scheme.

For doing this, let us define the state variables tracking
errors and control inputs errors

s = 22— .‘t'(t) ; Tas =%— 2°(t)

zss = y—R(t) ; zus= ﬂ—R‘(t)

Z5s = B—F*(8) ; zes =0 —F*(t)

g = W
- Sr® (y —R@+ %mrm)
Uzs = Uy — i;l(t) (10}

The linearized dynamics, around the ideally regulated
open loop trajectories, is given by
24 = Zu
D¢ 1 »
b = (R —g)oe — 30l Juss— %eos(i’ -

iy = %4

. 1 .

B = —Ez— o cos(F s + oo sin(F s

255 = Zes

o5 = Lugs (11)

A linear time-varying state feedback controller, of
the “proportional plus derivative” (PD) type, including
time-varying compensation terms results in the incre-
mental correction inputs

%5 _ | MsinF* McosF* x
~ | MoosF* —MsinF*

[ (ﬁ‘ — g) 55 + Kap¥15 + ksa®2s ]
—E°z5s + kypzas + kyaZas

_ 0
[ 1 (kapZss + keaZes) ]

where kyp, ked, Kyp, kyd, kop 80d kog, are strictly posi-
tive design constants.

The closed loop linearized system is given by

£ = =z
225 = —kep¥is —kaeaz
+ I% coa F* [kepzss + keazes]
ty = z4
2 = —kyprss— kyites
- ﬁ sin F* [kep x5 + keaes)
Tss — Pes
da = —[kep+LM ((g— R*)oos F~ — & sin F*)] x5
—kpaxes + LM cos F” [kap1s + kza®as)
—LM sin F* [kypz95 + kydTus) (12)

It is not difficult to show that the closed loop system
(12) may be rendered exponentially stable to zero un-
der the established physically meanigful assumptions
and for a set of suitably chosen controller design con-
stants and displacement reference trajectories.

A full feedback controller for the helicopter model,
based on the above considerations, is thus given by

w = %‘(t}(g—ﬁ'(t)+'p;—b(?dnf"(t))
. + U1
u = —Fl.ft) + Uag (13)

4 Simulation Results

For the simulations presented in this section, the fol-
lowing values were assigned to the helicopter system
parameters: M = 4313 Kg, g = 98 m/é?, L =
1.0456 x 10~* rad/N-s*.

4.1 Off line computations example

We first consider a trajectory planning example corre-
sponding to the off-line computations represented by
equation (9) for & given desired displacements z*(f)
and y*(t), starting and ending with ideal bovering con-
ditions while requiring a position transfer between two
known equlibrium values in the z-y plane. The desired
horizontal and vertical displacement maneuvers were
specified as polynoimal splines. For this, we used a
POlYnomm function 'l(h tl) tﬂ)v h <t<iy, utisfylng
niti;t1,t2) = 0 and 5(ta; t1,83) = 1, with a suitable
number of time derivatives being zero at times, t = #;
and ¢ = ;. For the simulations we have used the fol-
lowing polynomial spline interpolating between 0 and
1 with five time derivatives being zero at ¢+ = ¢, and
five time derivatives also being zero at ¢ = t3.

. _ t—h]' it t—h)’
ntitnta) = [ta—tl {"l nt:—¢x+r’(tn—h
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t—t\? l—t.)‘_ (t—h)‘
"(t,—e,) o laou) "l

with r; = 252, r; = 1050, rs = 1800, r4 = 1575,
rs = 700, ro = 126. Thus, z*(t) and y*(t) are given by

2(tn) fort < tp
Z(2he) + (2(Tny) — 2(Ens)(ti tass Thg)

=) = for thi < t < Ty
2(Thy) fort > Ty
(14)
v(t“) fort < t,4
gy = 1 V) + WTer) —yltsdnltites, Tog)

for tyy< t £ Ty
y(Toy) fort > Ty
(15)
with z(ty;) = 100 m, 2(Th¢) = 300 m #); = 30 sec,
Ty = 60 sec, y(to:) = 30 m, y(Tyi) = 200 m, ¢y = 50
sec, Typ = 90 sec.

Figure 2 shows the computed attitude angle trajectory
corresponding to the prescribed horizontal and vertical
motions.

The corresponding open loop control inputs, which
would be given to the helicopter under ideal conditions
impling no external perturbations and no initial setting
errors, are specified, by virtue of the partial differential
fiatness of the system, as the open loop signals,

ui(t) = m%(t) (g —R(t)+ I;:L(;) sinF‘(t))
we = SO

The simulated responses of the helicopter dynamics to
such an open loop control is precisely represented by
the same curves in Figure 2 as long as the initial con-
ditions for the kinematical and dynamical variables are
taken to exactly coincide with the ideal hovering con-
ditions, F*(t,) = 0, F*(f;) = 0 and the flat output
trajectory is given by the off-line data computed from
9).

4.2 Feedback controller performance

The performance of the proposed multivariable feed-
back controller (13) was tested in a combination of de-
sired horizontal and vertical displacement maneuvers,
involving an intermediate rest point with a subsequent
“backing up” while ascending, or descending, require-
ments, was also prescribed as indicated below, with
a suitable polynomial spline function interpolating be-
tween 0 and 1, specified as before by a function now
denoted by v(¢; 7, 0), for ¢ > ¢ > . A possible realiza-

tion of the described trajectory is then

z(t;.;) fort < tp

z(tas) + (2(t1) — (Er))vlE; thsy 1)
for thi <t < tm

z(tar) for ¢ < & < tp2

z(tas) + (z(trs) — z(ta2))v(t; tas, ths)
for tha < t < trs

z(tas) for tha < t < ta

2(Tag) + (2(Tag) — 2(884))¥ (8 thas Thy)
for tha <t < Ty

z(Tay) fort > Ty

z*(t) = ¢

(16)

~

Y(tei) fort < ty

Y(tei) + (p(ter) — y(Eai))w(ti toss tus)
for tyy <t < tn

y(twl) for £ <t < ty2

Y(tes) + ((toz) — Y(tea))¥(titea, tos)
for t2 < ¢t < tyy

y(ti) for 2.3 < &t < tyy

Y(Tor) + (Y(Tog) — y(te )t tos, Tog)
for t,4 < t < Tyy

y(Tyy) fort > Ty

v (t) =<

”

an

The simulation results of the closed loop system re-
sposes are shown in Figure 3. The simulation test in-
cluded the action of an unmodeled wind gust distur-
bance occuring around time ¢ = 30 s of the maneuver
execution time. The helicopter is commanded to ad-
vance from 2 = 100 m, to z = 300 m, and from y = 30
m to y = 200 m, where it rests for some time. After
this, it is commanded to back up from 2 = 300 m to
2 = 200 m and, while backing up, it is directed to start
an ascent maneuver from y = 200 m to y = 360 m.
The horizontal and vertical displacment reference tra-
Jectories z* () and y*(t) are very closely followed by the
closed loop system with little alteration. The tracking
of the attitude reference signal (not shown in the fig-
ure) is temporarily lost around the location of the wind

gust.

5 Conclusions

In this article we have proposed a linear time-varying
state feedback controller complementing a nonlinear
off-line (ie. open loop) computed controller ideally
solving a trajectory tracking task for a simplified, un-
deractuated, longitudinal model of an helicopter. The
approach is based on exploting the fact that the sys-
tem belongs to the class of “Liouvlllian” systems, which
generalizes the class of differentially flat systems. This
last property allows for an off-line trajectory planning
of a chosen subsystem “flat” output, represented by the
attitude angular position, in terms of the required hor-
izontal and vertical displacement trajectories. Given
such desired horizontal and vertical displacement tra-
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jectories, the corresponding attitude angle trajectory
and the required control inputs are computed using
the partial differential flatness of the model with re-
spect to the vertical displacement and the attitude
angle variables. The ideal open loop contro} is then
completed with a linearization based static, though
time-varying, state feedback controller bestowing the
required robustness to the open loop control scheme.
The proposed static feedback controller has been tested
through computer simulations, with very encouraging
results. A wide range of longitudinal maneuvers, in-
cluding initial state and mid course unknown perturba-
tions, are efficiently handled by the proposed feedback
controller scheme.
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Figure 1: Schematical diagram of a helicopter.
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Figure 2: Ideal open loop horizontal and vertical displace-
ment maneuvers via computed attitude trajec-
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Figure 3: Forward and backing ver, while
ing, including unmodelled wind gust perturba-
tion.
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