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Abstract: A dynamical feedback controller is proposed for the regulation of a simplified model
of a double effect evaporator. The controller is based on feedback passivity considerations,
complemented with a trajectory planning scheme in terms of the systems passive output.
A drift vector field decomposition greately facilitates the direct application of the “energy
shapping plus damping injection” feedback controller design methodology. The controller
performance is enhanced with the aid of a trajectory planning scheme which effectively avoids
singularity arcs in the state space, related to a loss of the relative degree of the passive
output, while allowing for the satisfaction of physically meaningful state space and input
space restrictions. The performance of the obtained controller design is evaluated by means

of computer simulations. Copyright © 1999 IFAC
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1 INTRODUCTION

Passivity based control of nonlinear systems is
rapidly gaining well deserved popularity due to the
several advantages related to controller simplicity,
robustness and the physically appealing features
of the approach. General developments of passiv-
ity based control, into the realm of nonlinear affine
systems, have been carried over relatively recently.
The seminal contribution is that of Willems (1972)
in the context of dissipative systerns. The arti-
cles by Hill (1976) constitute also a general ap-
proach with emphasis on conditions for stability of
feedback interconnected systems. A geometric ap-
proach to feedback equivalence of nonlinear passive
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systems was contributed by the work of Byrnes et
al (1991). Recent contributions, within the context
of adaptive systems, have been given by Serén et
ol (1995). A full perspective of the area is found in
the book by Sepulchre et al (1997) and the book
by Ortega et al (1998).

Section 2 presents some generalities regarding a
canonical form for passivity based control pre-
sented in Sira-Ramfrez (1998). Section 3 is devoted
to derive a passivity bascd controller for a simpli-
fied double effect evaporator model. The perfor-
mance of the designed controller is also illustrated
by means of digital computer simulations. Section
4 contains the conclusions and suggestions for fur-
ther research.
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2 A CANONICAL FORM FOR
PASSIVITY BASED CONTROL

2.1 Background Results
Consider the class of nonlinear single-input single-
output systems described by

:i‘(t) =
Yy

f@) +ol@)y, re XCR", uelUCR
h(z), yEYCR L

where X denotes the operating region of the sys-
tem, constituted by a sufficiently large open set
containing a continuum of equilibrium points, pos-
sibly parametrized by a constant control input
value u = U € U, of the form = = E(U) and given
by the solution of f(Z) + g(Z)U = 0. In particu-
lar, for © = 0, we assume f(Z) =0 implies T = 0.
However, motivated by a large class of real life sys-
tems, we are specifically interested in nonzero con-
stant state equilibrium points z = %, obtained by
nonzero constant control inputs ¥ =U.

We assume that a C? positive definite storage func-
tion V : R” —» Rt is given such that V(0) =0.

By 0V/dx we denote the column vector field with
components 8V/8x; i = 1,...,n. The transpose of
this gradient field, (8V/8x)T, is denoted by the row
vector 8V/8z7. Let L,V (x) denote the directional
derivative of the scalar function V(z) with respect
to the control input vector field g(z) at the point
x. We assume throughout the entire article that
the following assumption holds valid:

V(@) = %g(x) £0 Vze X (2

This last condition is usually known as the
transversality condition and simply establishes
that the vector field g(z) is not orthogonal to the
gradient of V(z) at any point £ in A'. In other
words, the control vector field g(z) is not tan-
gential, at each z, to the storage function level
sets, defined in the state space of the system as,
{zxeXx V(z) = constant}. This condition is
quite familiar in sliding mode control of nonlinear
systems (see Sira-Ramirez, 1988) and it amounts to
having a storage function which is locally relative
degree one in X'.

For each x € X, we define a projection operator,
along the spen of the control vector field g(z) onto
the tangent space to the constant level sets of the
energy function V(z), as the matrix M(z) given
by

1 v
M@ =[1- o] ®

The following are some properties of the matrix
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M (z) which further justify the given name of “pro-
jection operator” (see Sira-Ramirez, 1998)

Proposition 1 The matriz M(z) enjoys the fol-
lowing properties:

g{z) € KerM(x)

o € KerMT (=)

M(z)[I — M(z)] =0.

The following proposition depicts further proper-
ties of the projection matrix M(x).

Proposition 2 Let f(x) be a smooth vector field,
then the vector M(x)f(z) can be wrilten as

M) 1) =5 (@5

where ‘Z_(x) is a skew-symmetric matriz, ie., 5

(=)+ \} (x) = 0. On the other hand the vector
field [I — M(x)] f(x) can be written as

- M@) &) =~ T @ + 55

where S(z) is a symmetric matriz, ie., S(x) =
ST (x).

2.2 Vector field decompositions through
projection operators

As a consequence of the above propositions and
definitions we have the following decomposition of
arift vector fields

Proposition 3 A vector field f(z) can be natu-
rally decomposed in the following sum

(@) = M(z)f(x) + (I — M(z))f (=)
—s@¥ rsmS @
where J(x) i a skew-symmetric matriz and S(z)
is o symmetric matriz.

2.3 A canonical form for nonlinear systems
As a corollary to the above results, a nonlinear sys-
tem of the form (1), with a positive definite storage
function V(z) which also satisfies the transversal-
ity condition L,V (x) # 0, can always be rewritten
a8

Vv VvV
-7(1')5 + Sp(x)%

+S"(I)?}_Z + g(z)u (%)

T (t) =
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with J(z) being skew-symmetric, S,(z) being pos-
itive semi-definite and S, (x) being negative semi-
definite. However, if S,(z) is positive definite, then
Sn(z) is zero and conversely if Sp(z) is negative
definite then Sy(z) is zero.

3 A PASSIVITY BASED FEEDBACK
CONTROLLER DESIGN FOR THE
DOUBLE EFFECT EVAPORATOR

Industrial evaporators are extensively used in the
chemical and food industries to enbance final
product concentrations from a given low con-
centration feed solution. Under standard as-
sumptions, treated in Silva-Navarro and Alvarez-
Gallegos (1995), a reasonable reduced order model
for a double effect evaporator is given by,

61Fo(Co — z1) + b2z3u
&2 SaFp(x1 — x2) + (Saz1 + 522)u
y = 2 (6)

where ; and z2 represent the weight fraction so-
lution concentration in the first and the sccond
congtitutive parts of the evaporator, also called,
for simplicity, the “first effect" and the “second
effect” respectively. The state variables x,, 23 of
the plant, naturally satisfy the following physically
meaningful restrictions:

z2eX={0 < Co L= <2z <1} (7)

2

These restrictions effectively bound the set of pos-
sible state trajectories to a triangular region in the
two-dimensional state space (see Fig. 1).

The parameter Cp is the constant weight fraction
input concentration to the first effect, while Fp is
the solution feed flow rate expressed in Kg/min.
The control input u is the steam feced flow rate, also
expressed in K g/min. The constants, &, .. .8, are
given by

1 _ Kk _1

b = Wl"s“_w,"s“_w,

ko _R(ltka)
64 = W' 23 W, (8)

where W;, W, are the hold-up masses in each onc
of the effects, respectively. Thesc quantities are
expressed in Kg and they satisfy (0 < Wi < Wa).
The constant parameters k1 and ko, are positive
constants denoting the ratio of the vapor flow rate
produced with respect to the steam fed flow rate
in both effects. They are such that the condition
: O < ke < k1 < 1 holds valid. The control in-
put variable =z may be constrained by a set of the
following form,

vueU ={u€R : Umax >u>0}
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The family of equilibrium points, parametrized by
a constant equilibrium value for u, set tobe @ = U,
is given by

- FoCo . £, = FyCp
‘T FR—-RU "’ Fo —ki(1+ k2)U

Eliminating the constant parameter U from the
above relations, it readily follows that the family of
physically meaningful equilibrium points, (Z1,%2),
are all located on the first quadrant, in the corre-
sponding branch of the following hyperbola,

_ x1Cop
= TF *2)Co —Faz ©

The manifold of physically valid equilibrium points
is, necessarily, constrained to lay within the trian-
gular region previously described by equation (7).

x2

It is easy to verify that the output variable y =
zg is & relative degree one output, as long as the
singularity condition,

64:51 + 651:2 =0
is not valid. This singularity line is also given by,
84 1

Xy =——x1 =

rabtal v (10)

The singularity line (10) is a straight line with posi-
tive slope crossing the origin and having two points
in common with the manifold of equilibrium points,
(9), one in the first quadrant and the second one in
the third quadrant which is not physically mean-
ingful. In the first quadrant the singularity line lies
below the set of possible equilibria.

It has been shown in Silva~-Navarro and Alvarez-
Gallegos (1995) using Lyapunov stability theory,
that the outupt variable z is also a minimum
phase output. Thus, the variable x3 is a passive
output. Stabilization of x3 towards a desired con-
stant or reference value can be achieved by means
of system inversion, with a stable zero dynamics,
as long as the resulting trajectory does not violate
the relative degree one condition for this variable.

We next consider the storage function V(z) given
by, 5
V= 3 (:I:g + .‘L‘g)

The storage function directional derivative,
LoV (x), along the control input vector field

9(z) = [62z1 (baz1 + b5za)]”

is given by,
LoV(x) = 63@? + 84xr122 + 651:3
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The transversality eondition is valid everywhere in
the region &. and it fails to be valid on the set,

{reR?: L,V(z)=0}=
{x € R®: 622?+ Sumaza+ 6523 =0} (11)

This set actually represents the origin of coordi-
nates (0,0) in R? and, therefore, it is not a mean-
ingful restriction to the proposed solution.

A control problem involving a transfer between two
equilibria, or a maneuver involving a trajectory
tracking task, must be defined in such a way that
the transversality condition L,V (x) #0, is always
satisfied by each and every point of the prescribed
state trajectory in RZ2.

The operating region, free of singularities, is con-
stituted by the following set,

X = {zeR*:0<Co<m <z <1;

x; # 0} (12)

1
T Tt Fa
This set is shown in Fig. 1, along with the manifold
of equilibrium points and the line of singularity for
the relative degree 1 condition of the passive output
z2. Note that on X the quantity L,V (z) is strictly
positive.

The given system may be rewritten in the form,

& =[TJ(=) + S(Z)] + g(x)u (13)
where,
7@ = e[ % 3]
alx) =

51.F9(Co — z1)(64z1 + Spxa) — 6283fpx1(xy — %72)
2[622% + baz122 + O573)

and
Sn(x) S
sw=s | 28 S| o
with
Su(z) = 2616:Fp(Co —z1)z1
S12(x) = 61Fp(Co — z1)(daz1 + 8572)
+6283Fhzx1(x1 — z2)
Sz(z) = 263Fp(x1 — z2)(64z1 + 522)
B(z) = 1 (18)

2 [521‘% + é4z172 + 6517%]

The symmetric matrix S(z), with the state x con-
strained to the operating region X, can be further
decomposed into the sum of a positive semi-definite
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matrix Sy(x) and a negative semi-definite matrix
Sn(z) The following input coordinate transforma-
tion makes invariant the positive term appearing
in the contribution to V. Its effect is that of neu-
tralizing the corresponding vector field by making
it tangent to the stored energy level sets. This pro-
cedure renders the system output passive, from the
new input v towards the original output x3, with
respect to the proposed storage function V(z).
Substituting the feedback expression

— 1

bax3 + byxizTa + 6523
[x2v — Fpxy (6:Co + 63x2)) (16)
in equation (13) and after some straightforward
algebraic manipulations and some simplifications,

the partially closed loop system in PBCCEF is seen
to be expressed as,

ERIE

W%

z =

+ —JlFo 0 1
4] —&3F x3
622122
+ _’_;"Jzz,+6.=;z;+65:t, [ (6421 +6672)75 ] v (17)

1
5273 + baz1T2 + G573

[b2z12  (S4zmy + S5z2)x2) [ :; ] =z, (18)

Yy

with

81 FoCo (6421 + 8522) — 6253 Fpx}
6272 + 641172 + 6578

The “Epergy Shapping plus Damping Injection”

controller design methodology (see Ortega et al,

1998) yields the following dynamical feedback con-
troller,

6;::? + Sa2125 + 651:%
z3 (843 + bp72)
{:i:' [6263Fox — 61 FCo (6421 + 5512)]

=

bax% + Saz12 + Ss2d
+63Fpx3y — Ra(x2 — z34)} (20)
with £ given by the solution of
[=8a6Fox] + 81 FoColbems + &5z2)] .
633 + b4T1T2 + 6573

Saz172
-6 F¢
Fol + 6213 + 84z 122 + S5T3 v

+Ryi(z1 — &)

(19)

v =

é =

2y

The specification of a suitable trajectory for z3,(t)
and its corresponding time derivative £3,(2) is car-
ried out so that the systems response evolves away
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from the singular line in R? where L,V (z} = O.
The simulation example, presented next, illustrates
this point in detail.

3.1 Simulation results
We let, the system parameters to be given by

Fp = 2.525Kg/min

Co = 0.04 Kg.sugar/Kg.water

Wi = 95.0Kg. ; Wa = 1050 Kg.

ki = 0.808458 ; kp = 0.338461 (22)

A controlled transfer from an initial equilibrium
point, given by %(¢g) = 0.070 Kg.sugar/Kg. water
and Z3(tp) = 0.093954 Kg.sugar/Kg.water, to-
wards a second equilibrium point given by Z;(to +
T} = 0.09549 Kg.sugar/Kg.water and Z3(fo+T) =
0.1800 Kg.sugar/Kg.water was attempted by pre-
scribing a desired reference trajectory, x3,(t), for
the derived dynamical feedback controller. The
initial and final equilibrium points are located
well within the operating region. The transition
time between the equilibrium points was set to be
achieved in T = 250 minutes, with ¢, = 300 min
and to + T = 550 min.

The following open loop trajectory was prescribed
for z3,(2),
Eg(tg) for t <to
Za(to) + (Talto +T) — T2(to)) x
Lote)” [21 — 35t5to 4 15(-t ]

for to <t<to+T
Za(to +T) for t>T

x34(8) =

The time derivative of the desired open loop tra-
jectory is simply obtained as

0 for t<to .
(Z2(T) — Za(to)) e %

[105 —2104=t + 105 5=tk ]
for to<t<to+T
0 for t>tq+T

£34(t) =

The planned trajectory guarantees a sufficiently
smooth departure from the initial equilibrium
point ( the first four time derivatives being zero
at such initial point) and a smooth arrival at
the second equilibrium point (the first two time
derivatives being also zero at the arrival time).
The control input is maintained within reason-
able bounds, which are physically acceptable (see
Fig. 2 ). Indeed, typically, the maximum al-
lowed value for the control input is8 Unaexr = 3.4
Kg/min. The simulations show that the controller
maximum effort is well below this limiting input
value. In the x2-z1 coordinates, the proposed open
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loop trajectory follows a curve joining the equi-
librium points (Z1(to),F2(t0)) = (0.070,0.093954)
and (Z1(to+7T), Z2(to+T)) = (0.095541,0.18). The
controlled trajectory, in fact, moves away from the
singularity line and from the origin and it lies en-
tirely inside the operating region X (see Fig. 3).

Other equilibrium transfers are also possible with-
out crossing the singularity arc. However, using
special trajectory planning techniques, transfers
including crossings of the singularity arc are also
possible.

4 CONCLUSIONS

In this article a passivity based control design op-
tion was complemented with a trajectory planning
approach in the context of a double effect evap-
orator controller design example. The passivity
based controller was based on the “energy shap-
ping -plus- damping injection” methodology which
thus far has been unnecessarily restricted to Euler-
Lagrange type of systems. The advantages of the
proposed approach exploit the natural phisically
oriented features of passivity while at the same
time allows for efficient circumvention of singulari-
ties and other forbidden regions of the state space
thanks to the trajectory planning features of the
approach.
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Figure 1: Singularity line, manifold of equilibria, and
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ocutput concentration trajectory planning.

Copyright 1999 IFAC

14th World Congtess of IFAC

o xy o of
amy i ‘
Oparati ¥ i i .
(L2 X txgjectory
3 S
e %
|
ang
o
el ] —  singulerity line
[y
.04
nee]
*1
oh2 oot em oo Q1 ez a» 0w o o2

Figure 3: Planned state trajectory, the singularity
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