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Abstract

A feedback regulation scheme is presented which allows
for a wide range of displacement maneuvers on a sim-
plified longitudinal model of a helicopter system which
is underactuated and nondifferentially flat. The system,
nevertheless, is shown to be of the “Liouvillian” type. An
off-line, open loop, trajectory planning procedure is pro-
posed, based on the solution of differential equations for
the desired attitude angle reference signal, which precigely
results in the desired nominal horizontal displacement tra-
jectory. The performance of a proposed feedback con-
troller, which exploits the fact that the linearized system
has its coefficients on a Hardy filed, is evaluated through
digital computer simulations including unmodelled mid
course wind gusts and initial setting errors.

1 Introduction

In this article, a feedback regulation scheme is proposed
which effectively accomplishes a wide range of horizon-
tal displacement maneuvers tracking tasks for a simplified
longitudinal dynamics of a helicopter system model devel-
oped in the work of [8]. The proposed feedback regulation
method is based on the fact that the simplified model of
the helicopter constitutes a Liouvillian system i.e. a non
flat system with a flat subsystem of largest dimension.
The flat output completely determines the nonflat subsys-
tem variables, or the defect up to elementary quadratures.
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In the helicopter model adopted here, the flat subsystem
is represented by the attitude angle kynematic variable,
while the non-flat subsystem is represented by the hori-
zontal displacement.

An off-line trajectory planning is carried out for the at-
titude angle which is computed on the basis of the the
desired horizontal displacement. The calculation is per-
formed by inversion of the horizontal displacement dy-
namics in conjunction with the desired flat output subsys-
tem. The latter viewed as a dynamical system forced by
the desired displacement reference trajectory and its time
derivatives. This off-line procedure is certainly made pos-
sible by the Liouvillian character of the system. The nomi-
nal open loop controller, obtained from the off-line trajec-
tory planning procedure, is complemented with an “outer
loop” state feedback control option of the “proportional-
plus-derivative” type, specified on the basis of the lin-
earized attitude angular position and angular rate, as
well as the horizontal displacement and horizontal velocity
tracking error signals. The proposed control scheme pro-
vides the required robustness with respect to small inital
setting errors and unexpected perturbations occuring dur-
ing the flight maneuver execution.

Section 2 presents a simplified description of the he-
licopter dynamics together with the physically plausible
adopted assumptions. Section 3 contains a brief introduc-
tion to Liouvillian systems. The proposed feedback con-
trol scheme, based on open loop trajectory planning and a
Jacobian linearization-based controller is also presented in
this section. Section 4 presents some simulations testing
the performance of the closed loop system. These include
initial state setting errors as well as, unmodelled, stochas-
tic mid-air wind gusts perturbations. The conclusions are
presented in the last section.



2 A Simplified Model for the He-
licopter

We consider a simplified model of an helicopter, which
has been fully reported in various works (see, for instace,
[8]). The model only represents constrained flight, at a
constant heigth, and it is conformed by the following set
of controlled differential equations
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where z denotes the horizontal position of the helicopter,
u is the control input, the variable § denotes the atti-
tude angular position of the main rotor. L is a known
constant. It is worthwhile to notice that the model (1)
is different from the one analyzed in {7}, where the for-
-ward velocity dynamics, in straight level flight, reduces to
# = —gtan(6).

Straightforward manipulations of equation (1) yield the
following relationship:
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The right hand side of equation (2) must always be posi-
tive for reasonable maneuvers that do not exceed an atti-
tude angular displacement restriction —0maz < 6 < Omax
with Oax < /2. It follows that the quantity g —#tané
can be assumed to be non-negative. In fact, we assume,
that there exists a strictly positive scalar p such that
g— #tand > u. We adopt this assumption throughout.

3 Regulation of the Helicopter
Model

3.1 Liouvillian systems

Differentially flat systems, or flat systems in short, were
introduced by Professor M. Fliess, and his colleages, in a
series of articles [3]-[4]. Flat systems are characterized by
the fact that all variables, including the inputs, can be
expressed in terms of differential functions of the flat out-
puts, which is a set of independent differential functions of
the state, possibly involving the inputs and a finite num-
ber of their time derivatives. The set of flat outputs has
the same cardinality as the set of control inputs. Flat
systems constitute a subclass of the set of controllable
nonlinear systems which are equivalent to a linear system
in Brunovsky’s form by means of endogenous feedback. A
non flat system may still be controllable, but not all its
variables can be expressed as differential functions of a
particular set of independent outputs. The number of in-
dependent variables in the system, not expressible in terms
of the flat outputs, is known as the defect of the nonflat
system. Liouvillian systems have been recently introduced

by Chelouah in [1] from the perspective of Differential Ga-
lois theory in the context of Piccard-Vessiot extensions of
differentially flat fields. Liouvillian systems constitute a
natural extension of the class of differentially flat systems
characerized by the existence of an identifiable flat sub-
system of maximal dimension. A non-flat system is said
to be Liouvillian, or integrable by quadratures, if the vari-
ables not belonging to the flat subsystem are expressible
in terms of elementary integrations of the flat outputs and
a finite number of their time derivatives. This new class
of systems has also been shown to have interesting impli-
cations within the ralm of finitely discretizable nonlinear
systems, as inferred from the work of Chelouah and Peti-
tot [2].

3.2 The helicopter model as a Liouvillian
system

One may easily verify that system (1) is not linearizable
by means of static state feedback and, hence, it is also
non linearizable by dynamic state feedback either. On the
other hand, the simplified helicopter model (1) is clearly
Liouvillian, with the flat subsystem being represented by
the kinematics state variable 6. The subsystem flat output
is given by the attitude angle, F = # and, hence, the rest
of the kinematics subsystem variables are expressible as
differential functions of the attitude angle. Indeed, § = F°
and u = F/L. The nonflat subsystem is characterized
by the displacement variable z. This variable, and its
rate of change, are expressible in terms of quadratures of
the flat output F and its second order time derivative F.
Indeed, from the last equation in (1) and the previous
considerations about the flat subsystem, one obtains,
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The following integro-differential parameterization of
the system variables allows for some elementary equilib-
rium analysis and also establishes the main features of the
system:

g = F ;U= Ij
s L
F = —LMicosF— LgMsinF (4)

Thus, the zero dynamics, or remaining dynamics, corre-
sponding to a resting hovering position, characterized by
z = constant, £ = 0 and & =0, is given, according to (4),
by the following dynamics

F=—LgMsinF (5)

The zero dynamics is represented by the locally stable
oscillatory system (5) with equilibria located at the ori-
gin and, also, at the attitude angles of the form, F =
+kr k = 1,2,... The system is, hence, weakly minimum



phase around the origin, with respect to the horizontal po-
sition coordinate z, taken as a system output (See Figure

1).

3.3 Off-line trajectory planning

Suppose that a desired displacement maneuver is specified
as a sufficiently smooth trajectory z*(t) for the horizontal
position variable z. The desired maneuver is to take place
over a given, finite, time interval [to, T']. The specified tra-
jectory is supposed to take the helicopter from the initial
equilibrium hovering position, located at z(tp), towards
a final hovering horizontal coordinate value, specified as
2(T). The displacement maneuver may include an arbi-
trary number of intermediate resting equilibria, or hover-
ing positions, as well as “backing-ups” and advancements
of arbitrary lengths. The time evolution of the “off-line”
planned trajectory z*(t) is also assumed to start with a
sufficient number of zero initial and final time derivatives
(with similar features for intermediate resting positions).
This last requirement guarantees smooth departures from
initial or intermediate resting points as well as smooth
arrivals at intermediate equilibria, or at the final resting
position.

3.4 A trajectory tracking feedback con-
troller based on Pole Placement

The differential flatness property of the 8 subsystem al-
lows one to express the control input u as the quantity
FJL. Therefore, if a desired displacement is given by
z*(t), then, the corresponding flat output trajectory may
be computed by finding the solution F*(t) of the follow-
ing nonlinear second order differential equation, obtained
from the displacement equation,

F*=—LM3*(t)cos F* — LgM sin F* (6)
with initial conditions given by the ideal hovering condi-
tion F*(to) =0, F*(tp) = 0.

The “off-line” attitude angle trajectory F*(t), gener-
ated by the differential equation (6) is to be used as part
of an “on-line” feedback controller, obtained from the fol-
lowing approximate Jacobian linearization scheme. For
this, let us define the following state variables tracking
errors and control input error,

0 —F*(£) ; 205 =0 —F*(t) ; z35 =z —z*(t)
F (1)
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The linearized dynamics, under the assumption of small
deviations from the planned trajectories, is given by
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The fourth order, time-varying, linear system (8), which
is of the form £5 = A(t)zs + b(t)us, is found to be con-
trollable by standard tests,

rank [b(t), (A— ;—t) B(t), oy (A - %)3 b(t)] =4 ()

We expoit here the fact that the coefficients of the lin-
earized model (8) belong to a Hardy Field, i.e., to one in
which the largest comparability class, among functions, is
constituted by the class of exponentials. Using well known
results obtained from the work of Fliess and Rudolph, [5],
we proceed to place the poles of the linearized system,
at constant locations, sufficiently deep into the left hand
portion of the complex plane, by means of time-varying
linear feedback.

ug = ki (8)z15 + k2 ()25 + k3 (t)z3s + ka(t)zas  (10)
with
k) = fz + L2M cos F*(t) (g — tan F*(t)z*(t))
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where the set of constants {bo, b1, bz, b3} constitute a set of
constant Hurwitz coefficients, defining the following poly-
nomial in the complex variable A,

p(A) =X+ b3 + b A + A+ B (12)

The roots of this polynomial are assumed to be located
at fixed locations on the left portion of the complex plane.

A full feedback controller for the helicopter model,
based on the above considerations, is thus given by a com-
bination of the nominal and the incremental controller as
follows,

- % [#®)] + us (13)

with ug given by (10),(11).

4 Simulation Results

4.1 Off-line trajectory planning and no-
minal controller

Figure 2 shows the a typical horizontal displacement ma-
neuver specified by the following polynomial spline,

z(to) fort < to
(to) + (z(T) — z(t0))¥(t, b0, T)

z"(t) = for to<t<T 4

z(T) fort > T
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The inital and terminal times, as well as the initial and ter-
minal points on the horizontal line coordinate were taken
to be

z(to)=100m ; z(T) =300m ; top, =30s; T =60s

The above prescribed trajectory z*(t) for the helicop-
ter exhibits four time derivatives equal to zero at the ini-
tial instant ¢o, at which the maneuver is started, and also
at the final instant 7', at which the maneuver is ended.
The horizontal position smoothly increases from the value
z(tp) towards the final position value, z(T'), reaching the
final position at time T'. The helicopter indefinitely settles
there after time T'.

Figure 2 also shows the off-line computed reference att-
titude angle trajectory F*(t) as obtained from the solu-
tion of the differential equation (6) with z*(t) specified by
(14) and initial conditions taken to exactly coincide with
the ideal hovering conditions. The corresponding nomi-
nal control input u*, is given, according to the flatness
property of the kinematics subsystem, by u* = P /L.

For the simulations shown in this article, the following
values were assigned to the system parameters:

M = 4313Kg ; ¢ =9.8m/s’ ; L = 1.0456 x 10~'N — m/s’

4.2 Closed loop feedback controller per-
formance

The performance of the proposed controller (10),(11),(13)
was tested in two typical desired horizontal displacement
maneuvers, including initial states perturbation errors and
unmodelled disturbance gusts taking place in mid-air, dur-
ing the execution of the prescribed maneuver. Figure
3 depicts the performance of the closed loop system for
the attitude angular displacement, the attitude rate, as
well as the horizontal displacement and horizontal veloc-
ity variables corresponding to a prescribed trajectory of
the form (15). The simulation included an initial posi-
tion error with respect to the planned trajectory as well
as initial discrepancies from the ideal hovering conditions.
The proposed feedback controller manages to effectively
correct all initial discrepancies and achieve satisfactroy
tracking of, both, the computed attitude reference tra-
jectory F*(t) and the originally given horizontal position
maneuver z*(t). Tracking is achieved with unnoticeable
discrepancies.

In order to test the recovery features of the prescribed
controller to unknown disturbances, an unmodelled wind
gust disturbance was simulated which affected the ma-
neuver around the mid point between the intial and final
horizontal locations of the displacement maneuver. The
unmodelled gust disturbance is specified, for simulation
purposes, as an unexpected force disturbance in the atti-
tude dynamics occuring around a certain fixed horizontal
location of the maneuver path. The disturbance magni-
tude is assumed to have a shape similar to a “gaussian
probability distribution” curve. Such a force disturbance
is modelled in the following form:
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where R is the maximum magnitude of the force distur-
bance, occuring at the unknown location z4. The wind
gust disturbance vanishes away from the maximum force
location in accordance with the value of the constant pa-
rameter Z.

The simulation results, for a rather strong wind dis-
turbance of maximal amplitude of R = 6000Kgm/sec?,
are shown in Figure 4. The horizontal tracking is for all
practical purposes unaffected by the disturbance while the
attitude angle trajectory is seen to be severly perturbed
by the perturbation. The controller however retakes the
attitude tracking task, right after the disturbance ceases.

Finally a more complex maneuver, involving an in-
termediate rest point with a “backing up” requirement,
was also prescribed as indicated next. Let the function
é(t,7,0), for ¢ > t > 7, be defined in a similar fashion to
the previously defined function ¥(¢,%,T) in (15). Then,
a possible realization of the trajectory described above is
given by

r(z) = Rexp (16)

z(tg) fort < to

z(to) + (z(t1) — z(to))é(t, 0, 1)
for tpo<t <ty

:t(h) for t S t S t2

z(ts) + (z(ts) — z(t2)) (¢, t2, ta)
for to< t < t3

I(t3) for ts S t s t4

z(T) + (2(T) — z(t4))$(t, 4, T)
for t4< t < T

z(T) fort > T

The simulation results of the closed loop system re-
sponses are shown in Figure 5. The simulation test in-
cludes, again, a wind gust disturbance located around the
horizontal position z = 200 m. The helicopter is com-
manded to advance from z = 100 m, to z = 300 m,
through the wind gust, located around z = 200 m. The
helicopter is then forced to “back up” from z = 300 m,
to z = 200 m, and stand in a hovering position, precisely,
at the point where the wind gust disturbance exhibits its
maximum value. Again, the horizontal displacement ref-
erence trajectory z*(t) is followed by the closed loop sys-
tem with no alteration whatsoever while the tracking of
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the attitude reference signal is temporarily lost in the for-
ward phase of the maneuver. Notice, however, that the
prescribed atitude trajectory tracking is lost during the
“backing up” stage of the maneuver while the helicop-
ter is being placed in the middle of the wind gust distur-
bance. Nevertheless, since the second order derivative of
the perturbed attitude trajectory still has the ideal steady
state value needed for tracking, the horizontal displace-
ment tracking features are unaffected by the wind gust
perturbation in the steady state final hovering position.

5 Conclusions

In this article, we have proposed a simple linearization
based controller, complemented with a nominal off-line
computed control signal related to a trajectory planning
scheme, for the effective regulation of the horizontal dis-
placement and attitude dynamics of a simplified nonlin-
ear model of a helicopter system. The approach is based
on exploting the fact that the system belongs to a par-
ticular class of non differentially flat systems, called Li-
ouvillian systems. This last property allows for an off-
line trajectory planning of the flat output in terms of a
required, displacement, or defect, trajectory. The pro-
posed controller has been tested through digital computer
simulations with very encouraging results. A wide range
of longitudinal maneuvers including initial state and mid
course unknown perturbations were efficiently handled by
the proposed controller. A more complete study is being
pursued, using the full nonlinear model of the helicop-
ter derived in [8]. The scheme here proposed seems to
go through rather well for the multivariable case. A chal-
lenging task is represented by the development of feedback
control strategies for the “toycopter” model, developed by
Mallhaupt and his colleages [6]. Our proposed feedback
control scheme, in that case, works suitably well, provided
only attitude restrictions are imposed with no additional
orientation prescriptions.
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Figure 1: Zero dynamics corresponding to constant hori-
zontal displacement.
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ver via computed attitude trajectory planning. wind gust perturbation.
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Figure 3: Closed loop response in a hovering point-to- Figure 5: Forward and backing maneuver with unmod-
hovering point maneuver with initial state setting errors. elled wind gust perturbation and initial setting errors.



