Sliding Mode Control of a Differentially Flat

Vibrational Mechanical System: Experimental Results

*

J. Enriquez-Z4rate, G. Silva-Navarro, H. Sira-Ramirez
Centro de Investigacién y de Estudios Avanzados del I.P.N.
Departamento de Ing. Eléctrica - Seccién de Mecatrénica
A.P. 14-740, C.P. 07300 México, D.F.

MEXICO

Abstract

In this paper the differential flatness property and a
sliding mode controller are applied to a vibrating me-
chanical system in order to achieve asymptotic output
tracking and disturbance attenuation. The mechanical
system consists of two masses connected with springs.
The output to be controlled is the position of the under-
actuated mass, which is directly affected by an undesir-
able vibration (harmonic force with variable excitation
frequency). The active vibration control scheme exploits
the differential flatness property during the control de-
sign, employing only position measurements and ap-
proximate time differentiation, and is dynamically able
to track an off-line planned trajectory in spite of small
disturbances. The overall system performance is vali-
dated by some numerical simulations and experimental
results in a physical platform.

Keywords: Asymptotic tracking, Differential flatness,
Sliding modes, Vibration control.

1 Introduction

Many engineering systems undergo undesirable vibra-
tions. Vibration control in mechanical systems is an im-
portant problem, by means of which vibrations are sup-
pressed or at least attenuated. There are three funda-
mental methodologies described as passive, semi-active
and active vibration control. Passive vibration control
relies on the addition of stiffness and damping to the sys-
tem to reduce the primary response, and serves for an
specific excitation frequency and stable operating con-
ditions, but is not recommended for variable frequen-
cies and uncertain system parameters. Semi-active vi-
bration control deals with adaptive spring or damper
characteristics which are tuned according to the operat-
ing conditions. Active vibration control achieves better
performance by adding degrees of freedom to the sys-
tem and controlling actuator forces depending on the
feedback and feedforward information of the system ob-
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tained from sensors. In general, the addition of extra
degrees of freedom causes complex dynamics, with cou-
plings which can be linear or nonlinear. For more details
we refer to [3, 6, 1, 4].

On the other hand, many dynamical system exhibit
a structural property called differential flatness. This
property is equivalent to the existence of a set of inde-
pendent outputs, called flat outputs and equal in num-
ber to the control inputs, which completely parameter-
izes every state variable and control input (see [2]). By
means of differential flatness the analysis and design of
a controller is greatly simplified. In particular, the com-
bination of differential flatness with sliding-mode con-
trol techniques (extensively used when a robust control
scheme is required, e.g., uncertainty due to modelling
errors and dynamic disturbances [7]) qualifies as a valu-
able control scheme to achieve robust asymptotic output
tracking.

This paper considers the problem of controlling a two de-
gree of freedom mechanical platform consisting of mass
carriages and springs. The control objective consists
of trajectory planning of an underactuated output and
disturbance attenuation of external vibrations affecting
directly the system. The control law is synthesized ap-
plying the differential flatness approach as well as slid-
ing mode control techniques to achieve the asymptotic
output tracking of off-line planned trajectories in pres-
ence of harmonic vibrations (perturbation forces). The
overall closed-loop system comprises an active vibration
control scheme, using only position measurements and
estimated velocities and accelerations, which is able to
compensate harmonic vibrations with variable excita-
tion frequency and, simultaneously, get the asymptotic
output tracking. Some numerical simulations and exper-
imental results on a physical system illustrate the robust
performance of the active vibration control system.

2 Vibrating mechanical system

An schematic diagram of the vibrating mechanical sys-
tem is shown in Fig. 1. The mechanical system con-
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Figure 1: Schematic diagram of the mechanical system.

sists of two mass carriages (mj,m3) interconnected by
bi-directional springs (k1,k2). Each mass carriage sus-
pension has an anti {riction ball bearing system, there-
fore, the linear dashpots (cy,c2) shown in Fig. 1 are
included only to describe the small viscous dampings.
The control force is represented by u(t), which can di-
rectly push the mass m; to satisfy the desired control
objectives (trajectory tracking and disturbance attenu-
ation). This control force is obtained from a brushless
servo motor connected to a pinion-rack mechanism. The
underactuated mass carriage mg is affected by an exoge-
nous (harmonic) force f(t) = Fsin(wt) generated from
a shaker mounted on the carriage (eccentric connected
to a dc-motor shaft with velocity regulation). Optical
encoders can measure the mass carriage positions via
a cable-pulley system (velocities and accelerations are
numerically approximated by software).

The primary and secondary subsystems are composed
by the elements (mg,ce,k2) and (my,cy, k1), respec-
tively. The undesirable vibrations on the mass carriage
my are produced by the action of the harmonic force
f(t). The secondary subsystem (my,ci, k1) may be con-
sidered as a passive vibration absorber for the primary
subsystem (mg, c2,k2); it is typically designed to sat-
isfy the resonance conditions, where the harmonic force
/(t) is actually attenuated from x3(t) only for a specific
excitation frequency w and stable operation conditions.
The main disadvantage of this open-loop control scheme
is the absence of robustness with respect to parameter
uncertainties or varying excitation frequencies.

The introduction of the control force u(t) result in an
active vibration control scheme. This will be properly
designed using differential flatness, sliding mode tech-
niques and trajectory planning.

2.1 Mathematical model

The mathematical model of the two degree of freedom
mechanical system shown in Fig. 1 is given by

myiy + ety + kz +ka(z —32) = ut) (1)
mais + cpda —ko(m —22) = f(t) (2)

where T, and z, denote the horizontal positions of the
mass carriages m; and my with respect to the resting

point, respectively. The control input u(t) and the ex-
ogenous signal f(t) are forces able to push or pull the
mass carriages m; and mg, respectively.

By defining the state variables z; = x1, 22 = %1, 23 =
Ty, 24 = Zp the model in (1)-(2) is represented in the
state space form

= Az+Bu+Ef,ze R, fe R 3)

y = 23 yeRl (4)
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1t can be easily proved that the free vibrations of system
(3)-(4) are only stable for the undamped case (i.e., when
¢; = 0 and ¢z = O the matrix A has all its eigenvalues
over the imaginary axis) and asymptotically stable for
the damped case (i.e., when ¢; > 0 and ¢ > 0 all the
eigenvalues of A have negative real part). Moreover, this
system is completely controllable.

The transfer function of the system (3)-(4) relating the
disturbance f(t) with the output y = z3 is easily ob-
tained as
Y(s)
F(s)

m132 +c8+ (k1 =+ kg)
dgst +dzsd + dys? + dys+do
where dg = mymg, d3 = mycz + macy, dz = mMaks +
mg(k1+k2)+clt:2, dy = k261+02(k1+k2) and dp = k1 k2.
When f(t) = 0 the equilibrium state is given by
z® = col(u®/k1,0,u®/k1,0), where u® is a constant in-
put (force), hence, u® = 0 implies z° = 0. Otherwise,
the disturbance f is in conflict with the transfer of the
equilibrium state to any desired trajectory.

G(3)

Remark 1 The outputy = 23 has relative degree 4 with
respect to u and relative degree 2 with respect to f, hence,
the disturbance decoupling problem is not solvable. Al-
though disturbance attenuation is still possible by appli-
cation of a robust controller.

3 Differential flatness of the vi-
brating system

A dynamical system is differentially flat if there exists a
set of differentiable functions of the states, the so-called



flat outputs, by means of which all the state variables
and control inputs can be expressed in terms of the flat
outputs and its time derivatives. This structural prop-
erty and many illustrative applications have been widely
explained in several papers by Fliess and co-workers (see
[2] and references therein). With this property the full
linearization problem can be established and extended
to different classes of nonlinear systems. Differential
flatness is specially useful for asymptotic stabilization,
exact linearization, non-minimum phase outputs, tra-
jectory planning, etc.

For simplicity in the analysis of the differential flatness
for the mechanical system (3)-(4) assume that f(t) =0
Because this system is completely controllable then is
differentially flat. In fact, the output to be controlled
Yy = 23 is the simplest flat output. In order to show
the parameterization of all the state variables and con-
trol input, we firstly compute the time derivatives up to
fourth order for y = 23, resulting

Yy = 2
Y = =2
. . k c
¥ = z4=772(z1—za)—n—;‘;z4
k k k 7k
Yy = _—26221+_22+_2023+ (Q)——224
m2 ma 2 mg my
W _ (3)2_@_(kl+kz) N
my |\ My my my
k.
_LC_1+&]22

Then, the state variables and control input are param-
eterized in terms of the flat output as follows:

1 . 0
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mg... Cy .. .
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24 = y (5)
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If the control objective is the asymptotic output track-
ing to a desired reference trajectory y*(t) then, we can
compute the state variables and control input required
to get perfect tracking of the given nominal trajectory.
Therefore, in an ideal setting the parameterization in
(5)-(6) can be used to determine 2*(t) and u’(t) leading
toy(t) =y*(t). As a matter of fact, the differential flat-
ness approach itself does not provide asymptotic track-
ing and robustness in presence of the exogenous signal
or parameter uncertainties into the system. In case that
f(t) # 0, the above parameterization must explicitly in-
clude the effect of f and time derivatives up to second
order.

A sliding mode controller based on differential flatness
will result in a more realistic control scheme and better
system behavior.

4 Sliding mode control based on
differential flatness

Specifying a desired trajectory y*(t) for the flat output
y(t) = 23(t) and defining the tracking error by e(t) :=
y(t) — y*(t) a state feedback controller, based on exact
tracking error, is obtained as follows (see eq. (6)):

a2m2 aymg +aqca \ ..
= —{ [ 3 ¥
2

+ (‘%"’ +fag+ a4) g+ (a1 + as)y] + ()} (7)

Application of (7) to the system (3)-(4), but in coordi-
nates (y,9,%, ), leads to a closed-loop system in the
Brunovsky canonical form. The new control input v(t)
is designed to stabilize the system and obtain the desired
tracking. For instance, the linear error feedback

Yo @®

where a;,1 =0, ...,3, are positive real constants selected
in such a way that the polynomial s* + a3s® + ags® +
a1 8 +ag be Hurwitz according to some prescribed linear

v(t) = a3'€(t) + agé(t) + a1é(t) + ape(t) +



dynamics (pole placement). Thus, the tracking error
dynamics is described by the linear ordinary differential
equation

@) + as€(t) + a28(t) + a1 é(t) + coe(t) =0 (9)

which is globally asymptotically stable (i.e.,

lime— oo e(t) = 0).

Note that this linear controller does not consider the
perturbation f(t) and parameter uncertainties. To over-
come this kind of difficulties we shall exploit the well-
known robustness properties of the sliding mode control
techniques.

Consider a linear switching surface defined by
oe,é,€,€) = € + By + 1€ + Boe (10)

where §;, ¢ = 1,...,3, are design parameters incorpo-
rating the regulation and stability requirements. The
sliding motion of the tracking error e(t), that is, the er-
ror dynamics restricted to o(-) = 0, is governed by the
linear differential equation

€+ [,€ + B1€ + PBoe=0 (11)

Next, the constants By, 8,8, are selected to verify that
the associated polynomial s® + 3,5% + 3,5 + 3, be Hur-
witz. As a consequence, the error dynamics on the
switching surface o(-) = 0 is globally asymptotically sta-
ble.

The sliding surface o(-) = 0 is made globally attractive
with the continuous approximation to the discontinuous
sliding mode controller as given in [5], i.e., by forcing o
to satisfy the dynamics

0 = —plo +vsign(o))] (12)

where 12,7y denote positive real constants and sign(-) is
the standard signum function. By using the Lyapunov
function 02 it is easy to prove the asymptotic conver-
gence of ¢ to the sliding surface o = 0 (i.e., 06 < 0).

The sliding mode controller is then synthesized by
= [B2€(t) + B1€(2) + Boé(t)] +
. @w*
—plo() +vsign(e(Di+ v (1) (13)

v =

Taking into account the physical limitations of the vi-
brating mechanical system, the degree of ‘smoothness’
introduced in (12) is quite reasonable to avoid the high
switching frequencies. In addition, we shall use the fol-
lowing approximation of the signum function

(14)

. a
sign(o) =~ ol +¢

where ¢ is an arbitrarily small positive constant.

5 Simulation and experimental
results

The closed-loop system performance is illustrated with
some numerical simulations. By means of several real
time experiments on the vibrating mechanical system
previously described.

The experimental platform is comprised of three subsys-
tems: i) electromechanical plant with actuator (brush-
less dc servomotor) and sensors (high resolution en-
coders of 4000 pulses per revolution with an effective
linear resolution of 2266 counts/cm) as described in
Fig. 1; ii) real time controller based on a DSP installed
into a PC; and, iii) software installed on a PC to pro-
gram the control algorithms and collect the informa-
tion. The maximum sampling rate of the overall system
is 1.131 Khz (minimum sampling time is 0.000884 sec-
onds), however, to avoid damages and high frequencies
this was fixed to 0.00884 seconds.

Because only position measurements are directly avail-
able on the experimental platform (via the encoders),
then the time derivatives up to fourth order of the corre-
sponding flat output are numerically approximated into
the real time control algorithms. In fact, these com-
putations will be clearly observed on the noisy control
input.

The physical parameters of the vibrating mechanical
system are given in Table I.

Table 1. System parameters
my = 185kg, mo =2.55kg
ky = 400 N/m, ¢; =~ 10 N/(m/s)
ko= 175 N/m, c¢g =10 N/(m/s)

The above parameters were actually validated to fit the
open-loop time and frequency response of the mechani-
cal system.

The parameters of the proposed sliding mode controller
(7)-(13) were designed to have polynomials

B+ By8% + 815+ Py = (s +p) (32 + 2w, 8 +w,2l)

hence

By =pw? By =wl+2pCwn Py =(p+2Awa)
Thus, we select p = 20, { = 0.7071, w, =12.566 rad/s,
p=10,v =10 and € = 0.01.

The desired trajectory for the flat output y(t) = z2(t)
is planned off-line according to

i = constant if 0<t<Ty
y’)=< gl1-v(tN,T2)] if T <t<Tp
0 if t>Th



where 7 = 0.010 m, Ty = 6 5, T3 = 8 5, and ¥(t, T, 7T2)
is a Beziér type polynomial such that ¢(T1,T1,T3) = 0
and ¥(72,T1,Tz) = 1. The polynomial is given by

= a[r—r ] +

T -1y U\ -1
e (=T 2+ e (=T 5]

\-T, T\ - T

with constants », = 252, r; = 1050, r3 = 1800,
rq4 = 1575, rs = 700 and r¢ = 126 chosen to guarantee
smooth connections of the three piecewise continuous
trajectories. Observe that y*(t) is obtained as the con-
catenation of non-smooth and sufficiently smooth tra-

jectories. This is considered to compare the closed-loop
tracking dynamics in both cases.

Y(t, 71, Tz)

Several numerical simulations were performed with and
without the presence of the exogenous vibration force
given by f(t) = Fsin(wt), with F = 2.295 N and
w = 62.8 rad/s. Note the small amplitude of the vi-
bration combined with a high excitation frequency for
the natural frequencies of the physical mechanical sys-
tem (6.7 rad/s and 18.3 rad/s). 1t is evident that such a
perturbation force causes highly oscillatory responses on
the system dynamics, thus exciting possible unmodelled
dynamics.

5.1 Simulation results

In Fig. 2 is shown the numerical simulation using
the sliding mode controller and differential flatness for
f(t) = 0 [N]. There one can sec a good dynamic per-
formance with respect to the asymptotic output track-
ing. In case of f(t) = 2.295sin(62.8¢) [N] (see Fig. 3)
the asymptotic output tracking is quite reasonable, be-
cause the undesirable vibration is attenuated, but with
the compromise of having internal behaviors and control
actions which are highly oscillatory.

5.2 Experimental results

In Figs. 4 and 5 is illustrated the experimental results
obtained with the application of the sliding mode con-
trol scheme based on differential flatness. Specifically,
when f(t) = 0 [N] the closed-loop response is quite sim-
ilar to that obtained via numerical simulations (see Fig.
4). The control input present high frequencies close to
the abrupt and smooth changes on the desired reference
trajectory. This is due to deficient numerical approxi-
mations for those time derivatives necded into the real
time control algorithm.

When the mechanical system undergoes the vibration
force f(t) = 2.295sin(62.8t) [N] (see Fig. 5) the asymp-
totic output tracking is quite reasonable and even better
than that obtained through numerical simulations. The
active vibration control is able to attenuate the distur-
bance from the output, resulting in a robust asymptotic

output tracking. Again, the internal dynamics and the
control force show highly oscillatory responses.

6 Conclusions

Differential flatness and sliding mode control techniques
were applied to a vibrating mechanical system in order
to achieve asymptotic output tracking and disturbance
attenuation. The mechanical system consists of two
masses connected with springs. The output to be con-
trolled is the position of the underactuated mass, which
is directly affected by an undesirable vibration (har-
monic force with variable excitation frequency). The
active vibration control scheme exploits the differential
flatness property during the control design, employing
only position measurements and approximate time dif-
ferentiation, and is dynamically able to track an off-line
planned trajectory in spite of small disturbances. The
overall system performance is validated via numerical
simulations and experimental results in a physical plat-
form. The active vibration controller is quite robust
against the action of exogenous (harmonic) vibrations
with high excitation frequencies.
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Figure 2: Simulation results using sliding mode control
and differential flatness when f(t) =0 [N].
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Figure 3: Simulation results using sliding mode control
and differential flatness when f(t) = 2.295sin(62.8¢) [N].
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Figure 4: Experimental results using sliding mode con-
trol and differential flatness when f(t) = 0 [N].
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Figure 5: Experimental results using sliding mode con-
trol and differential Alatness when f{t) = 2.295 sin(62.8t)
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