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Abstract

An approximate solution to the general reference tra-
jectory tracking problem, specified in terms of a de-
sired behavior for the non-minimum phase aircraft cen-
ter of mass position coordinates, is proposed by indi-
rectly defining a suitable trajectory tracking task for the
(minimum phase) flat outputs of the system represented
by the equivalent to the Huygen’'s center of oscillation
of the aircraft. The approach uses an approximating se-
quence which appears to be related to an infinite order
differential flatness of the system with respect to the
pon-minimum phase output variables.

1 Introduction

The regulation of non-minimum phase outputs repre-
sents an interesting problem which has received sus-
tained attention in the past. An indirect approach to
such problem was proposed in Benvenuti et alin [1] using
a judiciously chosen minimum phase output. A second
approach approximates the non-minimum phase system
by means of a minimum phase system ( see Hauser et al

(2D)-

Differential flatness, introduced in {3, is a far reach-
ing structural system property which can be related
to many feedback controller design techniques (back-
stepping, passivity, exact feedback linearization, etc).
Roughly speaking, a multivariable nonlinear system is
flat if there exists a certain vector of independent func-
tions, called the flat outputs, of the same dimension as
the vector of control inputs, which are differential func-
tions of the state of the system (i.e., these outputs are a
function of the state variables and also of a finite number
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y Estudios Avanzados (CINVESTAV-IPN), Mexico, and the Con-
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of their time derivatives), with the additional property
that, every system variable, i.e., states, original outputs
and also the inputs, can, in turn, be expressed as differ-
ential functions of the flat outputs.

PVTOL aircraft systems have been the object of study
by many researchers. An exact linearization solution to
the VTOL position transfer problem has been given by
Hauser et al in [2] using an approximation of the non-
minimum phase system by regarding it to be a slightly
non-minimum phase system. The regulation aspects
of the non-minimum phase outputs of the PVTOL air-
craft system have been studied in Martin, Devasia and
Paden [4] where flatness is exploited in a scheme us-
ing inverse trajectory feedforward in combination with a
state tracker while guaranteeing a bounded zero dynam-
ics. Recent articles, [5], [6], have proposed an indirect
solution to the rest-to-rest stabilization problem via the
tracking of a given set of trajectories for the flat out-
puts, computed on the basis of the non-minimum phase
output variables equilibria. The differential parameter-
ization is of little, or no, help on how to proceed with
more general kinds of maneuvers which do not neces-
sarily involve stabilization around an equilibrium point.
Typically, a trajectory tracking problem is specified in
terms of desired trajectories for the non-minimum phase
aircraft’s center of gravity. Typical maneuvers involve
the following a circle or of a “figure eight” and so on.

In this article, we show that the differential parameteri-
zation provided by flatness contains enough information
as to allow the determination of suitable open loop, non-
stationary, relationships between the desired trajectories
for the non-minimum phase output variables and the
corresponding required flat outputs trajectories. We es-
tablish an iterative procedure for generating a sequence
of finite order differential parameterization of the sys-
tem variables, including the flat outputs, in terms of the
non-minimum phase aircraft center of gravity position
coordinates. Only the first few elements of the approxi-



mating sequence need to be evaluated in order to obtain
reasonable trajectory candidates that serve as reference
trajectories for the flat outputs. The corresponding dy-
namic feedback controller is then obtained by exact flat
output trajectory tracking error linearization.

In section 2 we present the model of the PYTOL air-
craft and proceed to obtain the dynamic feedback con-
troller which regulates the system around a set of given
flat outputs trajectories. An iterative off-line compu-
tational algorithm is then proposed to approximately
generate the flat output reference trajectories in terms
of the desired non-minimum phase outputs trajectories.
Section 3 presents the simulation results. Section 4 is
devoted to present some conclusions and suggestions for
further research.

2 Trajectory Tracking for the PVTOL Aircraft
Example

2.1 The PVTOL aircraft model

The simplified description of the dynamics of a planar
vertical take-off and landing (PVTOL) aircraft is given
by the following magnitude and time normalized model
(see Figure 1)

¥ = —uy8inf + euycosd
= wuycosf +euzsinf —g
6 = u (2.1)

where z and z are the horizontal and vertical coordinates
of the center of gravity of the aircraft, respectively mea-
sured along an orthonormal set of fixed horizontal and
vertical coordinates. The angle 6 is the aircraft’s longi-
tudinal axis angular rotation as measured with respect
to the fixed horizontal coordinate axis. The controls u,;
and u, represent normalized quantities related to the
vertical thrust and the angular rolling torque applied
around the longitudinal axis of the aircraft respectively.
The constant g is the gravity acceleration and e is a fixed
constant related to the geometry of the aircraft.

The system outputs z and z are known to be non-
minimum phase. Indeed, if z and z are held constant by
means of a suitable control action, then, in particular,
# =0 and # = 0. Using the system dynamics (2.1) one
readily obtains the required control inputs as
u; =gcosd ; uz= %sin

The corresponding remaining dynamics is then repre-
sented by the following autonomous differential equation
for the angular position of the aircraft,

6= % sinf (2.2)

The dynamics (2.2) exhibits an unstable (saddle) equi-
librium point at the origin § = 0, 6 = 0 and a center
around 8 = m, § = 0. For initial conditions with zero
angular velocity, the periodic nature of the solutions of
2.2, imply a “rocking” motion of the aircraft around its
longitudinal axis. For zero initial conditions of the roll
angle and nonzero initial angular velocity, the system
(2.2) is unstable and hence, as time increases, the air-
craft rotates about its longitudinal axis while its center
of gravity remains fixed at a constant position in the z-z
plane (see Figure 2).

2.2 Differential flatness of the PVTOL model

It has been shown in [4] that the PVTOL model is dif-
ferentially flat, with flat output given by the horizontal
and vertical coordinates (F, L) of the Huygens center of
oscillation when the aircraft dynamics is re-interpreted
as the dynamics of a pendulum of length €. Such outputs
are given by,

F=z—esind ; L=2z+ecosd (2.3)

The PVTOL aircraft system model requires a second or-

der dynamic extension on the control input u;. Instead

of taking u; and %, as additional state variables, the fol-
N\ 2

lowing auxiliary variable ¢ = u; —e¢ (0) is introduced

as a new state variable.

It can be shown, after some algebraic manipulations,

that all the system variables z, z, £, 8, and ¢, are ex-
pressible as differential functions of F and L, i.e.,

z = F—e 2ﬁ‘ =
7+ ()
z = L—e (E+g) (2.4)
(.f«’*)z+(f,+g)2
§ = —than(%) is= (1'5)2+(_I",+.tl)2
Letting

F9 =y ; LW =0y

we obtain the following expressions for the original con-
trol inputs u; and uz as well as a second order differen-
tial equation describing the states (s,<), corresponding
to the second order extension of the control input vari-

able u;.
c+e (9)2

-:_- (—vl cosf —vg8inf — 2('9)

U =

Uy =



N2
¢ = —vlsin0+v2coso+c(0) (2.5)

2.3 A state feedback controller for trajectory
tracking in the PVTOL aircraft system

Suppose we are given a set of open loop trajectories
F*(t) and L*(t) which the flat outputs F and L are
required to follow over an indefinite period of time in
the real line.

One proceeds to impose on the flat output tracking er-
rors ep(t) = F — F*(t) and ey (t) = L — L*(t) the fol-
lowing asymptotically stable behaviors,

e (t) + asefD (t) + 0268 (t) + ar1ép(t) + aver(t) = 0
e$9 (t) + bselP (t) + baér (t) + biép(t) + boer(t) = 0
(2.6)

where the sets of coefficients {as,a2,a1,80} and
{bs, ba, b1, bo} are chosen so that the corresponding char-
acteristic polynomials are both Hurwitz polynomials,
i.e., with all their roots having strictly negative real
parts.

The specification of the tracking errors dynamics (2.6)
results in the following feedback controller explicitly
based on the specification of the desired flat outputs
trajectories,

0 = PO - (tnd - et -FO0)

—ay (—csin(o) - ﬁ'(t))
~a1 (2 — efcos — F*(1))
—ag (z — esinf — F*(t))
v = L) b (¢ cos(6) — fsin(8) — L*® (t))
by (scos(6) g - £*(2))
~by (4 +ebsing - L*(2))

—bo (2 + ecos@ — L*(t))
(2.7)

2.4 A suitable reference trajectory for the flat
outputs in terms of desired center of gravity dis-
placements

Sometimes, maneuvers are required which do not involve
a rest-to-rest equilibrium transfer. Moreover, the most
common specification of a desired trajectory is made
in terms of time-varying functions z*(t), 2*(t) for the
displacement variables z and z and not in terms of the
flat outputs. Notice that in order to determine suitable
trajectories F*(t), L*(t) for the flat outputs in terms
of the desired displacement variables trajectories, z*(t)

and z*(t), a complete specification of the corresponding
angular position trajectory, 8*(t), of the aircraft is also
necessary. It is not intuitively clear how to specify it
and neither is it possible to obtain it, in an exact way,
from knowledge of z*(t) and z*(t) alone.

Consider the set of relations linking the involved vari-
ables z*(t), 2*(t), and 8*(t) through the flat outputs
F*(t), L*(t), as obtained from the definitions of the flat
outputs (2.3) and the differential parameterization (2.4).

F*(t) z*(t) — esin8*(t)
L*(t) 2*(t) + ecos8*(t)
S F=(t)
6*(t) = -—arctan (f:‘(t) n g) (2.8)

We proceed to embed the above set of relations into an
off-line iterative computational algorithm of the form

Fi(t) = z*(t) — esinbi(t)
Li(t) = 2°(t) + ecosb(t)
_ Fi(2)
0,,+1(t) = arctan (Lk(t) " g) (2.9)

whose terms coincide with the original relations only af-
ter convergence. ! In these relations z*(t) and z*(t)
represent the desired trajectories for the displacement
variables and they are supposed to be known.We initial-
ize the above algorithm with a reasonable value of the
function 6, say 8 = 0. The first two iterations of the
algorithm yield,

{oo =0
R(t) = z*(t)
Lo(t) = z*(t) +e

1In fact one may view (2.8) as a set of relations implicitly
defining a nonlinear (unstable) differential equation. One may
view such an equation also as a static unbounded nonlinear dif-
ferential operator, as already suggested, years ago, by Chaplygin
(see the book by Kurpel’ [7]). The proposed embedding, (2.9),
stands as the iterative computational algoritbm usually devised
to approximately solve the underlying operator equation. Since
the main purpose of this algorithm is off-line trajectory planning,
convergence issues may be safely side-stepped, provided that the
candidate elements, generated by the iterative process, produce
reasonable approximations to the desired trajectory, which, as
shown below, is precisely the case in this example, after k = 1.



(81(t) = —arcta.n(%)(:)_g)
#*(t)
F(t) = z*(t)+e - )
] JE @2+ @0+
Lit) = 2*(t)+e ) +g )
g V@@ + @0 +9)?

The proposed algorithm produces a sequence of finite
order differential parameterizations of the angular po-
sition @ in terms of the desired reference trajectories,
z*(t) and 2*(t), which constitutes an approximation to
an eventual infinite order differential parameterization
of 0, of the form

k k
Beolt) = (x'(t),z*m,.... &oa (), 3220, )

Stopping the algorithm at some desired level of approx-
imation (say, when k = K), yields a set of reference tra-
jectories candidates F (¢) and L (t) for the flat outputs
F and L which can be directly used in the previously
proposed tracking error state feedback controller (2.7).
The reference trajectories for F and L are, thus, given
purely in terms of the desired horizontal and vertical dis-
placements z*(t) and 2*(t) and a finite number of their
time derivatives as

Fr(t) = z*(9)
K K
—esinfg (z*(t),2*(t), ., :::T:c‘(t), ::Wz'(t))
Ly() = z2*(@t)
K K
+ecosfx (z*(¢), z*(t), .-, ;:Tz'(t), %z'(t))

2.5 Simulation Results

We tested the performance of the feedback controlled
l?VTOL using only the first. two outcomes of the off-
lme‘ approximation algorithm, i.e., k = 0,1. The desired
horizontal and vertical displacements were given by the
time functions

z*(t) = Asinwt ; z*(t) = A(1 - coswt)

i.e., it was desired to follow a circle of radius A, centered
at the point z = 0, = A/2 of the z-z plane, with an

:ngular velocity of revolution around this center given
Y w.

The following set of system (normalized) parameter val-
ues and prescribed trajectory sSpecifications,

€=05; g=1; A= i w=03

were chosen for the digital computer simulations.

The controller design parameters were chosen so that the
polynomials pr(s) and py(s) each had four roots located
at the point —2+0j in the real axis of the complex plane,
i.e,

a3=8; az=24 ; a1 =32 ; a=16

b3 =8 ; bp=24; b r1=32; b=16

Figure 3 shows the evolution of the controlled horizontal
and vertical positions, as well as the angular displace-
ment corresponding to the first step reference trajectory
approximation functions. Notice that, in this case, the
flat output trajectories F*(t) and L*(t) are being ap-
proximated by the non-minimum phase quantities

F;(t) = z*(t) = Asinwt,
Ly(t) = 2*(t)+e=A(l —coswt) +¢

It is, therefore, expected to obtain a typical non-
minimum phase behavior of the controlled responses
with an “undershoot” around the initial time. The feed-
back control inputs will then tend to compensate this
momentary drift by exerting a large feedback control ac-
tion that we try to limit by imposing some saturations
to the control amplitudes. For this, the feedback control
inputs were restricted by, |ui1| < u1,maz, Ju2] < B2,maz
with %) maz = 82,maz = 10. As a result of the tracking
of a shifted circle by the flat outputs, the corresponding
position variables z and z track a nearly circular trajec-
tory. The closed loop performance results, for the first
order approximation flat output reference trajectories,
is already reasonably good for such a low order approx-
imation, as shown in Figure 3.

We also implemented a set of reference trajectories for
the flat outputs using the second step approximation
of the proposed off-line trajectory generation algorithm.
The expressions used for the corresponding desired ma-
neuver for the flat outputs were given by,

F{(t) = Asin(wt)
e ( Aw? sin(wt) )
\/ A20A sin?(wt) + (Aw? cos(wt) + g)°
Li(t) = A(1- cos(wt))
e ( Aw? cos(wt) + g )
\/ A2wt sin?(wt) + (Aw? cos(wt) + g)°
(2.10)

The time derivatives of the reference trajectories (2.10)
required by the dynamic feedback controller (2.5),(2.7)



were obtained using the Maple symbolic computation
package.

Figure 4 shows the computer simulation results corre-
sponding to the closed loop responses of the controlled
system. A non-minimum phase behavior is still observed
in the system’s responses at the beginning of the ma-
neuver. This time, however, the control inputs do not
reach a value high enough to exceed the imposed am-
plitude saturation limits. The accuracy with which the
displacement variables z and z track the desired circu-
lar trajectory, as the flat outputs track the correspond-
ing off-line computed trajectories (2.10), is remarkably
good.

In order to test the robustness of the proposed trajectory
tracking scheme, an unmodeled additive wind perturba-
tion force ((t) was assumed to affect both the horizon-
tal and the vertical displacement dynamics. This wind
gust perturbation was modeled as a Gauss distribution
function on the (z, z) plane, centered around the point

z = —0.5,z = 1.9, with maximum amplitude B, given
by
z(t) +0.45)% + (z(t) — 1.9)2
()= Besp (~ (040454 ()~ 197

Figure 5 shows the corresponding closed loop perfor-
mance of the controlled system in the (z,z) plane,
for several values of the wind gust amplitudes, B =
0.1, 0.2, 0.4, with ¢ = 0.1. The controlled trajecto-
ries are seen to be momentarily disturbed from its pre-
scribed circular course and, as the perturbation fades,
when the aircraft moves away from the turbulence point,
the controller brings the motion of the aircraft back to
the prescribed ideal circular trajectory.

3 Conclusions

In this article, initial steps have been taken to exploit
differential flatness, in a non-traditional manner, for ref-
erence trajectory tracking problems. In many exam-
ples of physical nature, as in the PVTOL example, it
is difficult, if not impossible, to directly specify a suit-
able reference trajectory for the flat outputs which, in
turn, generate a desired, or pre-specified, set of trajec-
tories form the (non-minimum phase) system outputs.
We have shown that the differential parameterization al-
lowed by the flatness of the system contains the key to
uncover a natural sequence of finite differential parame-
terizations approximating a certain flatness property of
infinite order (i.e., one involving an infinite number of
time derivatives) exhibited by the non-minimum phase
center of mass position coordinates variables. Only the
first few terms of such an approximating sequence are

required in order to obtain an accurate reference solu-
tion. The approach consists then in using an element
of the described sequence, to off-line generate a suitable
reference trajectory for the flat outputs. An exact track-
ing error linearization controller is then used to provide a
feedback control solution, devoid of internal instabilities,
to the proposed non-minimum phase outputs trajectory
tracking problem.
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Figure 4: Closed loop responses for second order approx-
imation of flat output reference trajectories in
terms of the desired displacement trajectories.
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Figure 3: Closed loop responses for first order approxima-
tion of flat output reference trajectories in terms
of the desired displacement trajectories.



