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Abstract

In this article, a suitable combination of the differential flatness property and the second order sliding
mode controller design technique is proposed for the specification of a robust dynamic feedback multi-
variable controller accomplishing prescribed trajectory tracking tasks for the earth coordinate position
variables of a hovercraft vessel model.
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1 Introduction

Differential flatness is a structural property which makes a dynamic system (whether linear, non-linear,
monovariable or multivariable) equivalent to a linear controllable system under endogenous feedback i.e. one
which only requires internal variables to be synthesized. Differential flatness was first introduced from the
viewpoint of differential algebra in the work of Fliess et al [6]. It soon became apparent, however, that a
more general approach was possible from the viewpoint of differential geometry of infinite jet spaces. The
geometric approach using differential varieties, or “diffieties”, naturally views a dynamic controlled system
as a controlled Cartan field (a diffeity) and system transformations, leading to equivalence, are then cast
into the framework of Lie Bicklund transformations (see the work of Fliess et al[7]).

Higher order sliding modes appear as a natural generalization of first order sliding modes, thoroughly
studied in the work of Utkin [21], and of a vast, and still growing, list of authors (see the survey prepared
by Professor Emely’anov [4]). The basic idea, first proposed by Emely’anov and his coworkers, [3], in the
context of “second order sliding modes”, is to impose, on a certain auxiliary stabilizing output differential
function -or suitably defined tracking error- of arbitrary, but well defined, relative degree, the dynamic
behavior of a higher order discontinuous (sliding) dynamics. The chosen sliding dynamics, usually of order
higher or equal than two, is such that its trajectories globally, and robustly, converge towards the origin of
phase coordinates in finite time. This important robustness characteristic of the chosen ”higer order sliding
algorithm” is usually guaranteed to be preserved even in the presence of, unmodelled, absolutely bounded
disturbances. The reader is referred to the works of Levant [11], [12], Fridman and Levant [9], for interesting
details, extensions, and generalizations of the second order sliding mode control idea. In the context of
uncertain systems, the reader may also benefit from the contents in the recent articles by Bartolini and his
coworkers [1], [2). The article by Sira Ramirez et al [20] contains an application example of second order
sliding modes to the stabilization of the popular “TORA” system.

In this article, we present an application of the differential flatness property in the controller synthesis of
a nonlinear multivariable model of a hovercraft vessel. We propose a robust dynamic feedback control scheme
for the hovercraft system based on off-line trajectory planning and dynamic feedback auxiliary trajectory
tracking error stabilization to the origin of its phase space coordinates based on second order sliding mode
contro. For both, the trajectory planning and the feedback controller design aspects, use is made of the fact
that, contrary to the general surface vessel model [8], the hovercraft system model is indeed differentially
flat. The flat outputs are represented by the hovercraft position coordinates with respect to the fixed earth
frame. The system is shown to be equivalent, under endogenous dynamic feedback, to two fourth order,
independent, controllable linear systems in Brunovsky’s form. The flatness of the hovercraft model was
established in [19].

Section 2 revisits the hovercraft vessel model derivation performed in [5), taking as the starting point the
fully actuated, though simplified, ship model found in (8] and also in [13]. In section 2, it is shown that the
obtained hovercraft system model is differentially flat. In Section 3, we pose the trajectory tracking problem
and derive a robust dynamic feedback controller based on flatness and second order sliding modes. These
modes are induced on a set of independent auxiliary polynomial differential functions of the flat outputs
tracking errors. Section 4 contains the simulation results for a typical trajectory tracking maneuver and
Section 5 is devoted to some conclusions and suggestions for further research.

2 The Hovercraft Model

The regulation of a ship vessel, by means of two independent thrusters located at the aft, has received
sustained attention in the last few years. Reyhanoglu [17] uses a discontinuous feedback control law for
exponential stabilization towards a desired equilibrium. A feedback linearization approach was proposed by
Godhavn [10] for the regulation of the position variables. The scheme, however, did not allow for orientation
control. In an article by Pettersen and Egeland [13], a time-varying feedback control law is proposed which
exponentially stabilizes the vessel state towards a given equilibrium point. Time-varying quasi-periodic
feedback control, developed in Pettersen and Egeland [14], has been proposed taking advantage of the
homogeneity properties of a suitably transformed model achieving simultaneous exponential stabilization of
the position and orientation variables. An interesting experimental set-up has been built which is described
in the work of Pettersen and Fossen [15). In their work, the time-varying feedback control, used by (13},



is extended to include integral control actions, including excellent experimiental results. High frequency
feedback control signals, in combination with averaging theory and backstepping, have also been proposed
by Pettersen and Nijmeijer [16], to obtain practical stabilization of the ship towards a desired equilibrium
and also for trajectory tracking tasks. In [18] the ship trajectory tracking control problem was examined
from the perspective of Liouvillian systems (a special class of non-differentially flat systems, i.e. systems
which are not equivalent to linear controllable systems by means of endogenous feedback).

The hovercract model we use is based on the recent work of Fantoni et al [5] where the vessel’s dynamics
is derived on the basis of the underactuated ship model extensively studied by Fossen [8]. In [5], a series of
interesting Lyapunov-based feedback controllers are derived for the stabilization and trajectory tracking of
the hovercraft system.

In the book by Fossen [8] the following model is proposed for a rather general surface vessel dynamics,

My +Cwy+Dv = 7

where
0 0 —Mgav cosyy —siny 0
Cv) = 0 0 miu Jn)=| sinyp cosyp O (2.2)
MV —mpu 0 0 0 1
with
M = diag {mu,maa,my3}, D = diag {d,ds2,dss} (2.3)

The vector v = [u,v,7]T denotes the linear velocities in surge, sway, and angular velocity in yaw. The
vector 1} = [z, y, 1] denotes the position and orientation in earth fixed coordinates. The vector 7 = [y, 73, 73]
denotes the control forces in surge and sway and the control torque in yaw. The matrices C(v) and D
represent, respectively, the Coriolis and centripetal forces and the hydrodynamic damping.

Consider the simplified version of the underactuated hovercraft shown in Figure 1. A model for such
symmetric vessel can be directly derived, as already done in Fantoni et al [5], from equations (2.1)-(2.3) by
enforcing the following simplifying assumptions:

d.
mu =M, , TI=Mmuty, T2 =0, Ta=maTy, dyy =d3z3=0, B =m—2; (24)
We thus obtain the following model of the underactuated hovercraft vessel system,
& = wucosy —vsiny
¥y = usiny +vcosy
b= r
6 = ur+Ty
v = —ur—fv
7“ =] T,. (2.5)

2.1 Differential flatness of the hovercraft system

We have the following proposition

Proposition 2.1 The model (2.5) is differentially flat, with flat outputs given by = and y i.e., all system
variables in (2.5) can be differentially parameterized solely in terms of r and y, as

_ i+B8y
(28 (a: +/3:i:)
(% + B) + y(§ +By)
V& +B2)? + (i + By)?




yr—2zy

v =
V& +82) + (5 + i)’
o OE+ ) — 2O+ By) + B (29 — )
(B+ Bz)* + (§ + Bi)?
b L @0+ i +B)
V(& +B2)? + (§ + By)?
.= yWE+BE) -G+ By) + B (y2 - =) - (s - vO4)
r (& +B2)+ (i + By)?
_9 [y (& + Bz) — 2 (j + By) — B2(3y — §2)] [(E+ BE)(&® +BE) + (7 + )y + B7)]
[(& + B2)* + (5 + BY)*]*
(2.6)
Proof
From the first two equations in (2.5) we readily obtain
v = gycosy— Isiny
u = gZcosy +ysiny 2.7)

Differentiating the first two equations in (2.5) with respect to time, yields, after use of (2.5) and (2.7),

£ = fcosy—uysinyg— vsiny — vy cosy
= 7T4co8y + fusiny
¥y = ﬁsin1/1+u1,bcos¢+t)cos¢—m];sin1/z
= Tyu8inyY — fvcosy (2.8)

Multiplying the first equation in (2.8) by sin4 and the second equation by cost) and then subtracting the
obtained expressions we obtain, after use of (2.5),

Fsiny — jjcosy = fv (2.9)
Similarly, multiplying the first equation in (2.8) by cosy and the second by sin4) and adding, we obtain
Ty = ¥costy+§jsiny (2.10)

Substituting the first of (2.7) into (2.9) one obtains, after some further algebraic manipulations

_i+8y _ ¥+ By
tany = 5% — 3 = arctan (55 +/355) (2.11)

Using (2.11) in (2.7) we obtain,

po JEFBE) - 2G+BY) _ yE— 2§ (2.12)
\/ (% + BE)* + (4 + B)® \/ (& + B2)* + (5 +BY)”

and
(% +Bz) + 9§ +BY) (2.13)

u=
V(E+ B2+ G+ By)
Substituting in (2.10) the value of 4, obtained in (2.11), leads to the expression for the force input, T,
given in the proposition. Finally, we make use of the fact that r = ¢ and 7, = 9.
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2.2 Invertibility of the control parameterization

The differential parameterization of the input torque 7, depends on the flat outputs, and their time deriva-
tives, up to the fourth order. Note, however, that the corresponding parameterization of the control input
74 only depends up to the second order time derivatives of z and y . This simple fact clearly reveals an “
obstacle” to achieve static feedback linearization and points to the need for a second order dynamic extension
of the control input T in order to exactly linearize the system.

Use of (2.5) allows the following (simpler) expressions for the control inputs 7, and 7, in terms of the
system’s state variables, the highest order derivatives of the flat outputs z and y, and a first order extension
of the control input 7.

y@ cosyp — z(9 sinyp — Brry — 20y — 2877y — Bur + v
o= (2.14)
Bu+T1y
Fo = zWcosy+ y@siny +28ur’ + 26%rv — Py, + 11y (2.15)
(2.16)

Using (2.6) we have that, fu + 7, = /(% + B£)? + (i + By)*. Clearly, we are interested in maneuvers
for which this quantity is bounded (which is physically reasonable and natural) and it is also bounded away
from zero (which somehow limits the class of desired trajectories).

Assumption 2.2 We assume that the positive quantity, /(8 + B%)? + (7 + By)?, is uniformly bounded by
a constant for all times, and it is nowhere identically zero along the evolution of the system.

The previous assumption specifically precludes us from considering trajectories that either lead, or con-
tain, a resting point for the earth position coordinates, z, and y, of the hovercraft vessel. These may be
treated by time reparameterizations, or “control of the clock” techniques (see {7]) which are outside the scope
of this paper. On the other hand, straight lines, circles, and many other types of trajectories, which are to
be followed at constant speeds, can be handled by the method here proposed.

Let ¢ and ¢ denote two independent auxiliary control inputs. Under the above assumption, the, locally
defined, input coordinate transformation

pcosy — Esintp — Brry — 2riy — 263y — flur + B
Pu+T1y
Fu = Ecosy +¢sing +28ur? +26°rv— fur, +r71,

Tr

(2.17)

yields the following transformed system
=g =g

The hovercraft system is thus equivalent, under endogenous feedback, to a set of two independent linear
systems in Brunovsky's controllable canonical form.

3 Trajectory Tracking for the Hovercraft System.

3.1 The unperturbed case

Suppose a desired trajectory is given for the position coordinates z and y in the form of specified time
functions: z*(t) and y*(£), respectively. The following proposition gives a dynamic feedback solution to the
trajectory tracking problem based on flatness and exact tracking error linearization through imposition of
second order sliding modes on stable differential polynomials of the tracking errors.

Proposition 3.1 Let the set of constant real coefficients {az, a1, 0} and {7,,71,7} represent independent
sets of Hurwitz coefficients, so that the polynomials in the complex variable s,

p(s) = + a8 + g, g(s) = +ms+m



have symmetric roots located in the left portion of the complez plane. Let z*(t) and y*(t) de a given a set of
desired trajectories for the position coordinates £ and y which satisfies assumption 2.2. Associated with the
polynomials, p(s) and q(s), define the following two auziliary differential functions of the position tracking
ervors:

p = G- () +ad - () +alz—2z"(t)
n o= @V @) +n0 -9 @) +ny-y'©)

Then, for any set of real parameters A,, B, and A,, B, such that A, > B, and A, > By, the following
dynamic second order sliding feedback controller

" $costp —Esiny — frry — 2riy — 20r%v — Blur + 8% (3.1)
Bu+ 1y
Py —rir, = Ecost + psiny +20ur’ + 28%rv — Pur, (3.2)

¢ = 229() —a(@® - 2O () - (E - 5" (1) - %sign(p)[Ap +B, + (4, — B,)sign(p )]

b = OO -mE® -y OO) ~n ~ i ) - 3sien()lAy + By + (4y — By)sion(n i)

with
¥ = wucosy —wvsiny
y = wusiny+vcosy
& = fvsiny+ 1,c08%9
J = Ttusiny — Pvcosy
z® = —[r(Bu+7y)+B]siny + (Brv + +,) cosy
y® = [r (Bu+1y) + ﬂzv] cosy + (Brv + +4)siny

(3.3)
sems-globally stabilizes the auziliary tracking errors p and n and their first order time derivatives p, 7 to

zero, in finite time. As a consequence, the trajectory tracking errors, e; = x — z*(t) and ey, = y — y*(t)
exponentially asymptotically converge to zero.

Proof
Subtracting the controller expression, for 7, in (3.1), from the open loop expression in (2.15) we obtain,
after some algebraic manipulations,
. 1 . 5
[p +53ign(p)[4, + By + (4, — By)sign(p p)]] cosy
. . oee I
£ [i+geiontas + By + (4 = Br)sionty ]| siny =0 (3.4

Proceeding in a similar fashion with respect to the corresponding closed and open loop expressions for 7,
one finds:

- [;é +%sign(p)[.4,, + B, + (A, — B,)sign(p b)]] siny
+ [n +%sign(n)[A,, + By, + (A — By)sign(n f))]] cosp =0 (3.5)

Then, clearly, the tracking errors functions p and 7 satisfy the ideal second order sliding dynamics

0

0 (3.6)

L1, . .
b+ Esm(p) [4,+ B, + (4, — B,)sign(p p)]

. 1. : :
] +§mgn(n)[A., + By, + (Ay — By)sign(n 0)]



As a consequence, the variables p and 1, as well as their corresponding time derivatives, p and 7, converge
to zero in finite time (see [20] for a proof of the semi-global convergence to the origin, in finite time, of the
trajectories generated by the second order sliding dynamics), thus imposing the following asymptotically
exponentially stable dynamics on the flat outputs tracking errors,

-2 () + ozt — 2 (£)) + aa(z — 2° ()
-5 @) +mE-¥ O)+ny-y" @)

3.2 The perturbed case

A simple tracing of the influence of unmodelled perturbations, in the open loop system (2.5), reveals that a
hypothesized perturbation in either the surge velocity equation, or the sway dynamics, affects all the state
variables of the system, except the orientation angle 1. On the contrary, a similar perturbation affecting the
yaw rate dynamics, propagates to all of the states in the system. We consider first the latter case.
Consider an unmodelled matched perturbation input, ¢(t), which is absolutely uniformly bounded by a
strictly positive constant S, i.e. | ¢(t) | < SV t. This perturbation affects the ship’s yaw rate dynamics in

the form:

£ = wucosy—vsiny

i usiny + vcosy

b=

4 = vr+7y

v = —ur—fv

Fo= 1r+s(t) (3.7

The input coordinate transformation (2.14), (2.15) on the perturbed system (3.7) results now in the
following set of perturbed Brunovsky canonical forms

2 = € —o(t) [(Bu+ Tu)siny + Bvcosy], ¥ =@ +¢(t) [(Bu+7u)cosy + pusing]  (3.8)

Evidently, from assumption 2.2, and for absolutely uniformly bounded surge and sway velocities u and
v, the perturbation terms affecting the transformed system are also absolutely uniformly bounded. 1 Thus,
for some strictly positive constant parameters Q and R, the perturbed transformed system can be assumed
to be of the form: z(9) = ¢ +m(2), ¥ = ¢ + n(t) with | m(t) | < Q and | n(t) | < R, for all ¢.

Following the same steps in the proof of the previous proposition, we find that the perturbed version of
the dynamics of the auxiliary tracking error functions p and 7 are now governed by,

p+ %3i9"(P)[Ap + B, + (4, — B,)sign(p p)] = m(t)
i+ g sign(n)[Ay + By + (A — Bo)sign(n )] = n(t) (3.9)

According to the robustness results of second order sliding modes [20), the perturbed evolutions of p and
1 converge to zero in finite time, provided, B, < A,, with Q < min{B,,(4,— B,)/2} and B, < Ay, with
R < min{B,, (A, — B,)/2}. This implies that for a set of suitable controller parameters, A(.), B, and for
an absolutely uniformly bounded perturbation input signal, ¢(¢), the trajectory tracking errors, z — z*(t),
and y—y*(t), still asymptotically exponentially converge to zero in spite of the influence of the perturbations.

A similar conclusion can be reached for the case of unmatched perturbations affecting the non-actuated
sway velocity dynamics. For absolutely uniformly bounded perturbations x(t) with similarly bounded first
order time derivatives, acting on the non-actuated sway velocity equation, as ¥ = —ur — fv +X(t), the input
coordinate transformation (2.14), (2.15) yields the following perturbed Brunovsky canonical forms:

INote that the sway velocity dynamics is a linear time-invariant dynamics, with a strictly negative eigenvalue, excited by
the product of the surge velocity, u, and the yaw rate, r. Since it is physically plausible to assume that these two velocities are
absolutely uniformly bounded, then it follows that the absolute value of the sway velocity is also uniformly bounded.



a® = g—r[23(0) - BA®)] cosy + [BA(E) + (2 - BAE)] sin
¥ = ¢ [BA®+ (7 - BIN®)] cosy — r [2A(t) — BA®)] sinp

The perturbations affecting the right hand sides of the Brunovsky forms are evidently absolutely bounded
for bounded yaw rates, r, and absolutely bounded perturbation inputs, A(t), with an absolutely bounded
first order time derivative. Thus, expressions similar to (3.9) are also valid. In the simulations presented
below, we test the proposed nominal dynamic second order sliding mode controller of Proposition 3.1 with
an unmatched perturbation input signal of the form just discussed.

4 Simulation Results

Simulations were carried out to evaluate the performance of the proposed dynamic feedback controller for
a rather common trajectory tracking task: The tracking of a circular trajectory, defined in the earth fixed
coordinate frame, of radius R, centered around the origin.

4.1 Tracking a circular trajectory

A circular trajectory, or radius R, is to be followed in a clockwise sense in the plane (y,z), with a given
constant angular velocity of value w. In other words, the flat outputs are nominally specified as,

z*(t) = R coswt, y*(t) =R sinwt 4.1)

For this particular choice of z and y, the nominal orientation angle ¥* () is given by

¥*(£) = arctan (%) = arctan(tan(wt — 6)) = wt — 0 (4.2)

with 8 = arctan(8/w).
The nominal surge and sway velocities and the nominal yaw angular velocity are given, according to (2.7)
and the fact that r = 1, by the following constant values

u*(t) = —Rwsind, v*(t) = Rwcosd, r*(t) =w (4.3)

Similarly, using (2.10) and the fact that 7, = |/; we obtain that the nominal applied inputs are given by

the following constant values
78(t) = —Rw?cosf, Ti(t)=0 (44)

Note that for the chosen trajectory, the nominal value of the quantity Su + 7, appearing in the denom-
inator of the controller expression for 7., is given by
Pu+ 7, = Rw(wcosf + fsinf) = Rw B +w?#0

The only system parameter 8 was set to be 8 = 1.2. We have chosen the following parameters for the circular

reference trajectory
R=10, w=01,

which result in = 1.4876 rad, 7% = —8.304 x 10~3. The controller parameters were set to be:
az =1, =14142, ay=7v,=1, A,=A4,=02, B,= B, =0.05

Figure 2 depicts the controlled evolution of the hovercraft position coordinates when the vessel motions
are started significantly far away from the desired trajectory. Figure 3 shows the corresponding surge, the
sway, and the yaw angular velocities. Figure 4 depicts the applied external inputs, 74(t), T (t).



4.2 Robustness with respect to unmodelled, unmatched, perturbations

In order to test the robustness of the proposed controller, we introduced in the non-actuated dynamics (i.e.,
in the sway acceleration equation) an unmodelled external perturbation force, simulating a rather strong

“wave field” effect, of the form:
A(z(t)) =L [sin(fz(t)) + = cos(nfz(t))] ( 9 =—ur — fv + AMz(t) )

with L = 0.15 and f = 10. The parameters of the second order sliding dynamics and the auxiliary function
p were set to be,
A= 0.2, B = 0.05, ay =7 = 1.414,00 =% = 1
In spite of the unmatched nature of the perturbation signal, the proposed dynamic feedback controller,
using the same controller parameters used before, efficiently corrects the undesirable deviations, due to the
persistent perturbation, and manages to accomplish the trajectory tracking task with satisfactory precision.

5 Conclusions

In this article, we have illustrated how the property of differential flatness can be advantageously combined
with the robustness and simplicity of higher order sliding modes. We have carried out this combined controller
design option in the context of the trajectory tracking regulation of an underactuated hovercraft system
model, derived through some simplifying assumptions from the general surface vessel model. This model
is shown to be differentially flat. The flatness property immediately allows to establish the equivalence of
the model, by means of dynamic state feedback, to a set of two decoupled controllable linear systems. A
trajectory planning, combined with a second order sliding mode trajectory tracking scheme , allows to obtain
a direct feedback controller synthesis for arbitrary position trajectory following. The design was shown to be
robust with respect to significant perturbation input forces even when they affect the non actuated portion
of the hovercraft velocity dynamics.

The characteristics, and simplicity, of higher order sliding mode controllers, beyond those of the second
order type treated here, seem to be a natural, and remarkably robust, alternative for the efficient regulation
and trajectory tracking tasks of perturbed nonlinear systems which are nominally differentially flat.

The more difficult problem of hovercraft position regulation towards trajectories that include a resting
equilibrium point is the object of ongoing research by many authors. The problem certainly deserves attention
from the flatness viewpoint using time-reparameterizations, and other suitable techniques.
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Figure 1: The simplified hovercraft system
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Figure 2: Feedback controlled position coordinates for circular path tracking
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Figure 3: Feedback controlled velocity variables for circular path tracking
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Figure 4: Applied control inputs for circular path tracking
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Figure 5: Circular path tracking performance under unmodeled sustained perturbations
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