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ABSTRACT

A simplified model of the hovercraft sys-
tem, used in the literature to illustrate non-
linear control options in underactuated sys-
tems, is shown to be differentially flat. The
flat outputs are given by the position co-
ordinates with respect to the fixed earth
frame. This fact is here exploited for the de-
sign of a dynamic feedback controller for
the global asymptotic stabilization of the
system’s trajectory tracking error with re-
spect to off-line planned position trajecto-
ries.

INTRODUCTION

The control of a ship having two indepen-
dent thrusters, located at the aft, has re-
ceived sustained attention in the last few
years. The interest in devising feedback con-
trol strategies for the underactuated ship
model stems from the fact that the system
does not satisfy Brockett’s necessary condi-
tion for stabilization to the origin by means
of time-invariant state feedback (see Brock-
ett, [1]). Reyhanoglu [13] proposes a dis-
continuous feedback control which locally
achieves exponential decay towards a de-
sired equilibrium. A feedback lineariza-
tion approach was proposed by Godhavn
[6] for the regulation of the position vari-
ables without orientation control. In an ar-
ticle by Pettersen and Egeland [8], a time-
varying feedback control law is proposed
which exponentially stabilizes the state to-
wards a given equilibrium point. Time-
varying quasi-periodic feedback control, as
in Pettersen and Egeland [10], has been pro-
posed exploiting the homogeneity proper-
ties of a suitably transformed model achiev-
ing simultaneous exponential stabilization of
the position and orientation variables. A re-
markable experimental set-up has been built
which is described in the work of Pettersen
and Fossen [11]. In that work, the time-
varying feedback control, found in [8], is ex-
tended to include integral control actions,
with excellent experimental results. High
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frequency feedback control signals, in combi-
nation with averaging theory and backstep-
ping, have also been proposed by Pettersen
and Nijmeijer [12], to obtain practical stabi-
lization of the ship towards a desired equilib-
rium and also for trajectory tracking tasks.
In [14] the author has examined the ship tra-
jectory tracking control problem from the
perspective of Liouvillian systems (a spe-
cial class of non-flat, i.e. non feedback lin-
earizable systems).

This article is motivated by the recent
work of Fantoni et al [9] where the hover-
craft system model is derived on the ba-
sis of the underactuated ship model exten-
sively studied by Fossen [5]. In [9], a se-
ries of interesting Lyapunov-based feedback
controllers are derived for the stabilization
and trajectory tracking of the hovercraft sys-
tem.

In this article, we propose a dynamic
feedback control scheme for the hovercraft
system based on trajectory planning and tra-
jectory tracking error feedback linearization.
For both the trajectory planning and the
controller design aspects, use is made of the
fact that, contrary to the general surface ves-
sel model [5], the hovercraft system model
is indeed differentially flat. The flat out-
puts are represented by the hovercraft po-
sition coordinates with respect to the fixed
earth frame (The reader is referred to the
work of Fliess and his colleages [2]-[4] for a
definition of flatness and a full discussion of
the flatness concept with its many theoreti-
cal and practical implications).

Section 2 revisits the hovercraft vessel
model derivation performed in [9], taking
as the starting point the fully actuated,
though simplified, ship model also found in
[5] and also in [8]. In that section, it is
shown that the obtained hovercraft system
model is differentially flat. In Section 3
we pose the trajectory tracking problem
and derive a dynamic feedback controller.
Section 4 contains the simulation results and
Section 5 is devoted to some conclusions and
suggestions for further research.



THE HOVERCRAFT MODEL

In a book by Fossen [5] the following model
is proposed for a rather general surface vessel
dynamics
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The vector v = [u,v,r]T denotes the
linear velocities in surge, sway, and angular
velocity in yaw. The vector n = [z,y,9]
denotes the position and orientation in earth
fixed coordinates. The vector T = [ry, T2, T3}
denotes the control forces in surge and
sway and the control torque in yaw. The
matrices C'(v) and D represent, respectively,
the Coriolis and centripetal forces and the
hydrodynamic damping.

Consider the simplified version of the
underactuated hovercraft shown in Figure 1.
A model for such symmetric vessel can be
directly derived, as already done in Fantoni
et al[9], from equations (1)-(3) by enforcing
the following simplifying assumptions
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We thus obtain the following model of the
underactuated hovercraft vessel system,
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We have the following proposition
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o, with flat outputs given by z and

y i.e., all system variables in (4) can be dif-
ferentially parametrized solely in terms of z
andy, as
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Proof

From the first two equations in (4) we
readily obtain

v
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Differentiating now the first two equa-
tions in (4) with respect to time. This yields,
after use of (4) and (6)
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Multiplying the first equation in (7) by
sin1) and the second equation by costy and

then subtracting the obtained expressions
we obtain, after use of (4),

#sin1 — §jcos) = fv 8)



Similarly, multiplying the first equation in
(7) by costy and the second by siny and
adding, we obtain

Ty = Zcosy +§jsiny 9)

Substituting now the first of (6) into (8)
one obtains, after some algebraic manipula-
tions
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Using (10) in (6) we obtain,
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Substituting in (9) the value of 9, ob-
tained in (10), leads to the expression for the
force input, 7y, given in the proposition. Fi-
nally, we make use of the fact that r = 1
and 7. = 9.
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Remark 3.2 Notice that once 1 and v are
obtained as differential functions of z and
Y, the rest of the hovercraft system variables
can also be expressed as differential functions
of Y and v. Indeed, from (4) we obtain,
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It is clear that all system variables are
expressible as differential functions of the
flat outputs.

The differential parametrization of the
input torque 7, depends up to the fourth or-
der time derivatives of, both, the flat out-
puts, z and y. Notice, however, that the cor-
responding parametrization of the control
input 7, only depends up to the second or-
der time derivatives of = and y. This simple
fact clearly reveals an “ obstacle” to achieve
static feedback linearization and points to
the need for a second order dynamic exten-
sion of the control input 7, in order to ex-
actly linearize the system.

Remark 3.3 Use of (4) allows the follow-
ing (simpler) expressions for the control in-
puts T, and 7y, in terms of the system’s state
variables, the highest order derivatives of the
flat outputs z and y, and first order exten-
sions of the control input ;.
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TRAJECTORY TRACKING FOR
THE HOVERCRAFT SYSTEM

Suppose a desired trajectory is given for the
position coordinates z and y in the form
z*(t) and y*(t), respectively. The follow-
ing proposition gives a dynamic feedback so-
lution to the trajectory tracking problem
based on flatness and exact tracking error
linearization.

Proposition 4.1 Let the set of constant
real coefficients

{a1,03,a3,04} and {71,72,73,74}

represent independent sets of Hurwitz coef-
ficients. Then, given a set of desired trajec-
tories z*(t) and y*(t), for the position coor-
dinates, the following dynamic feedback con-
troller
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with A = 0.6 and f = 10. The results of the
simulation are shown in Figure 5.

CONCLUSIONS

In this article, we have shown that the un-
deractuated hovercraft system model, de-
rived through some simplifying assumptions
from the general surface vessel model, is
differentially flat. This property immedi-
ately allows to establish the equivalence of
the model, by means of dynamic state feed-
back, to a set of two decoupled control-
lable linear systems. A trajectory plan-
ning, combined with trajectory tracking er-
ror dynamic feedback linearization, allows
to obtain a direct feedback controller syn-
thesis for arbitrary position trajectory fol-
lowing. The design was shown to be ro-
bust with respect to significant perturba-
tion forces affecting the non actuated dy-
namics.

The hovercraft system model is specially
suitable for passivity based feedback con-
trol, as already remarked by Fossen [5] and,
indirectly, carried out in [9], from a Lya-
punov stability theory based control strat-
egy. A fact that can be suitably exploited
is that the hovercraft model can be placed
in Generalized Hamiltonian form. The com-
bination of differential flatness and total en-
ergy managing strategies may conveniently
result in a simple and efficient feedback con-
trol option.
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Figure 1: The simplified hovercraft system
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Figure 2: Feedback controlled position coor-
dinates for circular path tracking
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Figure 3: Feedback controlled velocity vari-
ables for circular path tracking
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Figure 4: Feedback controlled angular orien-
tation and applied inputs for circular path
tracking
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Figure 5: Circular path tracking perfor-
mance under unmodeled sustained pertur-
bations



