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ABSTRACT

A new approach to chaotic systems syn-
chronization is presented from the perspec-
tive of state observer design in the con-
text of Generalized Hamiltonian systems in-
cluding dissipation and de-stabilizing vec-
tor fields. For a number of chaotic sys-
tems, the approach reduces the synchro-
nization problem to a linear problem inti-
mately related to the concepts of observ-
ability, or, detectability associated with con-
stant maps.

INTRODUCTION

In this article, we are concerned with the
synchronization of chaotic systems from the
perspective of Generalized Hamiltonian sys-
tems including non-conservative terms. It
turns out that the great majority of chaotic
systems can be placed in such a Generalized
Hamiltonian canonical form, from where the
reconstructibility of the state vector, from
a defined output signal, may be assessed
from the observability or, in its absence,
the detectability of a pair of constant ma-
trices. The Generalized Hamiltonian struc-
ture of most known chaotic systems allows
one to clearly decide on the nature of the
synchronizing (output) signal on the ba-
sis of the system dissipation and conserva-
tive energy managing structure and a need
for elimination, at the receiver end, of the lo-
cally, or globally, de-stabilizing vector field.
For an extensive bibliography about chaotic
systems, in general, and the synchroniza-
tion problem, in particular, the reader is re-
ferred to the collection of references gath-
ered by professor Chen [1].

Section 2 briefly describes a class of Gen-
eralized Hamiltonian Systems and proposes
a state observer construction. The class
of system comprises nearly all of the best
known chaotic systems addressed in the lit-
erature. Section 3 analyses the synchroniza-
tion problem, from the perspective of the ob-
tained results, for three standard chaotic

system examples. The last section is devoted
to some conclusions and suggestions for fur-
ther work.

NONLINEAR OBSERVER DESIGN
FOR A CLASS OF SYSTEMS IN
GENERALIZED HAMILTONIAN
FORM

We consider a special class of Generalized
Hamiltonian systems with de-stabilizing vec-
tor fields and linear output map , y, given by
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y = C%—g, z€R" yeR™ (1)
where S is a constant symmetric matrix, not
necessarily of definite sign. The matrix T
is a constant skew symmetric matrix. The
vector variable y is referred to as the system
output. The matrix C is a constant matrix.

We denote the estimate of the state vec-
tor z by ¢, and consider the Hamiltonian en-
ergy function H(§) to be the particularisa-
tion of H in terms of £. Similarly, we de-
note by 7 the estimated output, computed
in terms of the estimated state £. The gra-
dient vector §H(£)/8¢ is, naturally, of the
form M¢ with M being a, constant, sym-
metric positive definite matrix.

A dynamic nonlinear state observer for
the system (1) is readily obtained as

é = J(y>‘f,,—’;'+ (z+s)6ai§ +F)
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where K is a constant vector, known as the

observer gain.
The state estimation error, defined as
e = . — ¢ and the output estimation error,

defined as e, =y — 7, are governed by
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where the vector, dH/Je actually stands,
with some abuse of notation, for the gradient
vector of the modified energy function,

OH (e)/8e 8H/8x — 8H /8¢
= M((z—¢&) =Me

Below, we set, when needed, Z+S=W.

We recall the basic definitions of de-
tectability and observability in linear sys-
tems

Definition 3.1 Given a pair of constant
matrices (C,A), respectively of dimensions
m xn and n X n. The pair is said to be
detectable if the matriz

[ 4]

has full rank n for all values of s in the open
right half of the complex plane. The system
is said to be observable if the above matriz
is full rank for all values of s in the complex
plane.

If the pair of matrices (C,W) (resp.
(C,8)) is either observable, or detectable, it
is well known, from linear systems theory,
that there exists a constant vector K such
that all, or at least the observable, eigenval-
ues of the matrix W — KC (resp. (C,S))
are placeable, modulo symmetry with re-
spect to the real line, at pre-specified lo-
cations of the open left half of the com-
plex plane. The distinction made above re-
garding observable eigenvalues means that
some eigenvalues of (C,W) (resp. (C,S8))
may be fized and cannot be influenced by
any value of K. In the case of a detectable
pair, those fixed unobservable eigenvalues al-
ready exhibit negative real parts. If the
pair of matrices (C, W), (resp. (C,S)) is ob-
servable it means that, modulo the men-
tioned symmetry, all eigenvalues of W —KC
(resp. (C,S)) can be placed at will in the
left half of the complex plane by suitable
choice of the matrix K. As a consequence,
the matrix (W—KC)T also exhibits eigenval-
ues with negative real parts. This also im-
plies that the sum

w-kc) + w-kc”
= [S-KC)+[S-KC]T

= 2 [s - %(tcc +cT1cT)]

is a symmetric matrix with negative (real)
eigenvalues.

Notice that the matrix W — KC is a
square matrix, with no particular structure.

We can always trivially replace such a
matrix by the following sum

W-kc = {s-%[zcc+cT/cT]}
+ {I—%[ICC—CTICT]}

The first two summands clearly conform
a symmetric negative definite matrix while
the second two summands conform a skew-
symmetric matrix.

The state estimation error system may
then be written in the following form

& = [J(y) +T— % (kc - cTch)] %
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Then, taking as a modified Hamiltonian
energy function the positive definite func-
tion H(e), it is readily found that the time
derivative of this function, along the trajec-
tories of the observation error system, satis-
fies

He) 0; ()
_ 0H(e) 1 8H(e)
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withfi(e) =0 if and only if e = 0. In fact,
it is not difficult to show that the stability of
the error space origin e = 0 is ezponentially
asymptotically stable for an energy function
of the form H(e) = 2eT Me. In this case we
have

H(e)= eTMT [s — 5 (kc+ cT;cT)] Me
< —%aeTMe =—aH(e)

with a being a suitable scalar constant. We
have then proven the following result

Theorem 3.2 The state z of the nonlin-
ear system (1) can be globally ezponentially
asymptotically estimated by the state £ of an
observer of the form (2), if the pair of ma-
trices (C, W), or the pair (C,S), is either ob-
servable or, at least, detectable.

The observability condition on the either
the pair (C, W), or the pair (C, S), is clearly
a sufficient but not necessary condition for
asymptotic state reconstruction. The fol-
lowing simple example readily demonstrates
this issue.



Example 3.3 The pair of matrices
-1 0
5=[0_J,c=m1]

constitutes a non-observable pair, although
it is a detectable pair. Nevertheless, setting
K = 0 already renders the sum,

2 [s = %(/cc + cTzc”)] =28

6 negative definite matriz.

A necessary and sufficient condition for
global asymptotic stability to zero of the
state estimation error is given by the follow-
ing theorem.

Theorem 3.4 The state z of the nonlin-
ear system (1) can be globally ezponentially
asymptotically estimated, by the state ¢ of
the observer (2) if and only if there ez-
ists a constant matriz K such that the sym-
melric matriz

w-xc + w-kq”
_ __1 T+T
_2F Mm+cnﬂ
i3 negative definite.

APPLICATIONS TO SYNCHRONI
SATION OF CHAOTIC CIRCUITS

The Lorenz system

Consider the Lorenz system [2]

i?l = 0o (22 -_ 11)
$g = rT—Ty—1I123
i'3 = Z1%T2— b.‘l:s

The system can be easily written in
Generalized Hamiltonian form, taking as
the Hamiltonian energy function the scalar
function

11
H(z)= 3 [;a:f+ 3 +:c§]
This yields, according to the previous formu-
lation,
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The output signal to be transmitted should
be the state y =z; = [c 0 0]8H/8z. The
matrices C, § and Z, are given by

- 3¢ 0
C =00, S=| o =1 0],
0 0 -b
0 %o 0
I = —%a 0 0
0 0 0

The pair of matrices (C,S) already consti-
tute a pair of detectable, but non observ-
able, matrices. Even though the addition of
the matrix Z to S does not improve the lack
of observability, the pair (C, W) = (C,S+1I)
remains, nevertheless, detectable. In this
case, the dissipative structure of the sys-
tem is fully “damped” due to the nega-
tive definiteness of the matrix S. Then,
there is no need for an output estimation er-
ror injection for complementing, or enhanc-
ing, the system’s natural dissipative struc-
ture. The receptor is designed as

f. 0 i, 0
é: = |40 0 -y %ﬁ
& o y o %

2 1
-0® 30 0 0
+| 3¢ -1 0 %—H +| ry

0o o -5]% |o
and the synchronization error is therefore
governed by the globally asymptotically sta-
ble system
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Figure 2 shows the simulations of the Lorenz
system and the receiver’s state tracking
abilities for large initial deviations. The
system parameters were set to be

b=8/3,

o =10, r =28,

Chua’s Circuit

Consider Chua’s circuit, [4] shown in Figure
1. This circuit is described by the following
set of differential equations

leih = G(.’tg == 11)—F(Il)
Cyza = @G (.’51 - 32) +z3
L.’i)g = =2



where F(z;) is a voltage -dependent nonlin-
ear resistance of the form

1
F(.’L']) = 0.231+'§(b—0) (|l+a:1|— ll— I]'),

with a, b < 0, which clearly plays the role of
a negative resistor.

Consider, as a Hamiltonian energy func-
tion, the total stored energy in the circuit,
given by

1
H(z) =3 [Ci2] + Caz) + La3)

whose gradient vector is readily obtained as

Cy 0 0 21 Ciz
aa—H = 0 Cz 0 T2 = Cz T2
T 0 0 L z3 Lz

The system may be written in General-
ized Hamiltonian Canonical form, with a de-
stabilizing vector field, as

& 0o 0 0
| o= |0 0 L ‘Z_H
i3 z

0 - O
-& & o
g Gs 8H
+ G -G 0 el
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The de-stabilizing vector field evidently calls
for z; to be used as the output, y, of the
transmitter. The matrices C, S, and Z are
found to be

1

¢ = [Lod,
[ -& <% 0

¢l GG

S = z1%7-%0,
| 0 00
fo o0 0

T ={0 0
[0 - O

The pair (C,S) is neither observable nor
detectable. However, the pair (C,W) is
observable. The system lacks damping in
the z3 variable, and either in the z; or the z,
variable as inferred from the negative semi-
definite nature of the dissipation structure
matrix, S. If z, is used as an output, then
the output error injection term can enhance
the dissipation in the error state dynamics.
The receiver is designed as

g:, 0 0 (1) oH
& = |0 0 5 T
4] 0 -5 O

_% c% 0
+ G’ _liz 0 ﬁ
C1C2 c2 ¢

0 0 0

The choice of K, K2 and K3 as arbitrary
strictly positive constants suffices to guar-
antee the asymptotic exponential stability to
zero of the synchronization error.

The synchronization error dynamics is
governed by

. K. K.
é 0 & 7k | sn
: | —x 0 1
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Figure 3 depicts the simulations of Chua's
chaotic circuit state trajectories with the
corresponding receiver responses. To ease
the simulations we resorted to the following
normalized version of the circuit (see Hui-
jberts et al [?])

iy = B(—z1 +z2— d(y)
1':2 Z) — 29 + T3
33 = —7%2

with ¢(y) =ay+3(db—a)[| 1+y [+ |1-yl]
and

a=—£, b=—§,

7 7

The parameter gains for the receiver were
chosen to be

K1=2, K2=3, K3=3

B =156, =27

The Rissler System

Consider the following chaotic system, known
as the Rossler system (3]

i‘l = =T2—T3
£ = z;+azy
23 = b+4z3(z1—c)

With the energy function,
H = %(:t:f +23 +23)
we immediately obtain the system equations
in the form
2 0 -1 -1/2
2 = 1 0 0 %—H
i3 1/2 0 O z




0 0 -1/2
+[ 0 a 0 ]a—H

12 0 -c |9

0
+ 0
b+ ZiT3

The de-stabilizing field is a function of z;
and z3. Thus, the outputs should be taken
as y; = z, and y2 = z3. Notice, however,
that the pair of matrices

0 0 -c

is detectable and observable. This allows
us to perform an eigenvalue placement using
only injections of the synchronization error

0 -1 -1
c=[100], W=[1 a 0

e; = ¥ — £ and, thus the multivariable pole
placement is evaded.
The receiver may then be designed as
& 0 -1 -1/2] 5y
& = 1 0 0 a_f
& 1/2 0 0
0 0 -1/2
+ 0 a 0 Z—H
12 0 -c | %
0 K,
+ 0 +| K | [m-6&]
b+ niye K3
Figure 4 shows the state trajectories of
the Rassler system along with those of the
synchronizing system. The parameters for
the system, and for the observer gains, used
in the simulation were taken as,
a=04, b=2, c=-4, K, =24,
K; =-2.1418, Kj3; =-—1.8182

CONCLUSIONS

In this article, we have approached the prob-
lem of synchronization of chaotic systems
from the perspective of Generalized Hamil-
tonian systems including dissipation and
destabilizing terms. The approach allows to
give a simple design procedure for the re-
ceiver system and clarifies the issue of de-
ciding on the nature of the output signal to
be transmitted. This may be accomplished
on the basis of a simple linear detectabil-
ity or observability test. Several chaotic sys-
tems were analyzed from this new perspec-
tive and their possibilities for synchroniza-
tion were either confirmed, in the case of al-
ready obtained positive results, or it was ex-
plained in those cases where there is a known
lack of synchronization.
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Figure 1: Chua’s circuit

The Generalized Hamiltonian nature of
a many chaotic systems definitely helps in
the study of robust synchronization, un-
der the addition of masked transmitted sig-
nals seen as perturbations of the state recon-
struction error dynamics. More importantly,
given the clear energy managing structure
of Generalized Hamiltonian systems, the ap-
proach definitely helps in the study, via pas-
sivity based techniques, of linear and non-
linear feedback control strategies for chaotic
systems. These will be the issues of a forth-
coming publication.
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Figure 2: Lorenz system trajectories and
synchronized receiver trajectories
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Figure 3: Chua’s chaotic circuit state tra-
jectories and synchronized receiver trajecto-
ries
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Figure 4: Rdssler chaotic system state tra-
jectories and synchronized receiver trajecto-
ries



