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Abstract

In this article, we revisit the definitions of passivity and feed-
back passivity in the context of general continuous-time sin-
gle input, single output, systems which are jointly nonlinear
in the states and the control input. Neccessary conditions
are given for the characterization of passive systems and ex-
tend the well known Kalman-Yakubovich-Popov (KYP) con-
ditions. Passivity concepts are used for studying the stabi-
lization problem of general nonlinear systems. We extend the
‘Energy Shaping and Damping Injection’ (ESDI) controller
design methodology to the studied class of systems. A semi-
canonical form for nonlinear systems which is of the Gene-
ralized Hamiltonian type, including dissipation terms, is also
proposed. Passive and strictly passive systems are shown to
be easily characterized in terms of such a canonical form.

1 Introduction

The study of the behavior of a system in terms of its stored,
or dissipated, energy has an extraordinary value, since it is
directly related to the system’s stability properties. The con-
trol of a system in terms of stored energy considerations,
known as Passivity-Based Control (PBC), exploits the sys-
tem’s physical properties in connection to its energy manag-
ing and dissipation enhancement possibilities. The technique
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is known to bestow simplicity and robustness to the obtained
feedback controller designs.

We can distinguish three stages in the evolution of passivity
concepts and its application to control problems. The initial
developments of dissipativity and passivity concepts were
presented as a generalization of those found in early circuit
theory. The development of passivity and the connections
with feedback stabilization of a system, from a general oper-
ator theoretic viewpoint, were introduced in the early 70°s in
the work of Willems ({29, 30]). A different research line was
initiated by the work of Wu and Desoer {[31]), cast in terms
of the system input-output properties. The development of
passivity concepts, in relation to stability, was undertaken in
the works of Vidyasagar (28] and Zames [32). The extension
of Willems’ results to the case of nonlinear systems, which
are affine in the control input, was given by Hill and Moy-
lan in ([15, 5, 6, 7]). The idea of making a system passive
by means of a state static feedback and all the related ge-
ometry was given in the work by Byrnes et al ([1]). These
results were later complemented, in connection with the con-
cept of feedback positive systems, in the work of Kokotovic
and Sussman ([10]). Definite connections between passi-
vity, Lyapunov-based control and inverse optimal feedback
can be found in the book by Sepulchre er al[23]. The con-
ditions under which a nonlinear system is rendered passive,
via state static state feedback were extended by Santosuosso
([22]) to the case of an affine feedthrough system. The study
of feedback dissipativity, for the linear case, has been ad-
dressed in the work of Picci and Pinzoni (see [16]). The cor-
responding developments for the passivity of discrete-time
nonlinear systems were given by Lin and Lin and Byrnes in
[12, 13, 14]. For a global perspective of the area, the reader
is referred to the books by van der Schaft ([27]), Sepulchre
et al ([23]), Ortega et al ([20]) and Khalil ([9]).

The application of the passivity approach to systems control
is mainly found in the fields of mechanical, elecromechanical
and electrical systems, among some others. For applications



to robotics see the works of Ortega ([17, 19]). Electrome-
chanical systems were addressed in Ortega ([18]). Passivity
based controllers for power electronics were given in ([25]).
PBC has been shown to be suitably applied to other classes
of nonlinear systems (see, [24} and the works of Egeland
and Godhavn [3}, Johanssen and Egeland [8] and Fossen and
Strand [4]).

A fundamental control problem is that of stabilization of the
system trajectories around desired equilibria. To this pur-
pose, the Energy Shaping plus Damping Injection (ESDI),
control design methodology has been developed on the basis
of modifying the stored energy of the system, to take into ac-
count the desired equilibrium, and the addition, through state
or output feedback, of the required dissipation in order to
enhance the dissipation structure of the underlying stabiliza-
tion error system. Generalities and details of this technique
can be found in the work of Ortega et al [19], the work of
Sira-Ramirez et al, [25), and the recent article by Ortega et
al [21]).

In this article, we revisit the general definitions of passivity
in the context of general nonlinear SISO dynamic controlled
systems. The Kalman-Yakubovich-Popov (KYP) conditions
are derived in general terms. The ‘Energy Shaping and
Damping Injection’ (ESDI) controller design method is also
suitably extended to the general case. We propose a gen-
eral semi-canonical form for nonlinear systems which is of
the Generalized Hamiltonian type. Passive and strictly pas-
sive systems are shown to be easily characterized in terms of
such a canonical form. Our work is motivated by the devel-
opments presented in the articles by Lin (see [11] where an
attempt to generalize the KYP conditions were carried out
for the continuous-time case).

Section 2 revisits the general definitions about passive sys-
tems and feedback passive systems. In this section we de-
rive the generalized KYP conditions and set the stage for the
extension of the ESDI controller design methodology to the
general nonlinear systems case. Section 3 presents the ex-
tension of the ESDI design method. Section 4 deals with the
derivation of a Generalized Hamiltonian type canonical form
for nonlinear systems. The conclusions and suggestions for
further research are presented in the last section.

2 Passivity of General Nonlinear Systems

2.1 Generalities

We consider nonlinear single input, single output, systems of
the form

T =

f(z.u); z€R™ ueR
y = hiz,u), yeR ()

where f : R® x R = R™, is a smooth mapping of its ar-
guments which is zero at the origin i.e. f(0,0) = 0. All
considerations will be restricted to an open set of the form
W = X x U containing the origin (0,0) of R” x R. The C'!
function h : X x U — R, takes values on a subset Y of the
real line, R.

Associated with system (1), we consider a positive definite,
C! function, addressed as the storage function, V : X —
R* whose row gradient, with respect to z, is denoted by
av/ozT.

We also consider another C ! function, called the supply func-
tion, denoted by s(y,u), with s : ¥ x U — R. This function
satisfies the following properties

0 forallu € U
0, forally € ¥ (2)

5(0,u)
s(y.0)

With some abuse of notation, arising from the fact that

{(z, u) is not a proper vector field for an unspecified control

input, we, nevertheless, use Lie derivatives to briefly express

time derivatives of scalar functions of the state. Thus, we use
'A%

V= 7.7/ (@0 = LyawV 3)

Similarly, we write

v _ o (av _ v (ory _
W-a—u(7f(’="))-azr(au)-%" “

Definition 3.1 [} System (1) |3 said 1o be pasiive (resp.
strictly passive) with respect to the storage function and
supply function pair {V(z),s(y.u)} if there exists a po-
sitive semi-definite (respectively, positive definite) function
¢ : X — R*, such that, for any u € U, for any to and any
ty > to, the following equality is satisfied, irrespectively of
the initial value of the state z(to),

Viz(ty) - V(alta) = / "s(y(0), u(0)) =
—¢(z(0))}do Y(z,u) e W (3)

The above equality (5) is addressed as the stored energy bal-
ance equation. Equivalently, we can say that a system is pas-
sive if

V(z(ty) = V(alto)) < ]ﬁn' 5(y(7). u(a))do.
V(z,u) e W (6)

If the above inequality is a strict inequality the system is
strictly passive.

The last relation is known as the fundamental passivity in-
equality. It is easy to see that for C! energy functions, the
energy balance and the passivity inequality adopt the follow-
ing infinitesimal forms,

V(I) = '9(!/:“) - ¢($):

Remark 2.2 [Itisimportant to emphasize the need for a gen-
eral output function which explicitly depends on the input u
in a nonlinear fashion, i.e. y = h(z,u). For, if we consider
a system of the form £ = f(z,u) withy = h(z), and, as it
is customary in the literature, we adopt s(y,u) = yu, as the

Viz) <slyw) (D



supply function, then, the partial derivative, with respect to
u, of the passivity equality (7), would read,

ov ("’—’) (s, 4)= h(z) ®)

8zT \ du
which is contradictory.

We assume that the condition

ds Oh
LyV=gogu# 0 ¥izu)ew ©)

is locally satisfied everywhere in W. This condition is ad-
dressed to as the transversality condition.

Example 2.3 For systems affine in the control, of the form
&= f(z)+g(z)u, y= h(z)and s(y,u) = yu the transver-
sality condition reduces to

av
0zT

which has the clear geometric interpretation of having a con-
trol vector field g which is locally nowhere tangent to the
level sets { © | V (z) = constant }. For systems of the form
= f(z)+9(z)u, y = h(z)+ k(z)u, and s(y,u) = yu the
transversality condition adopts the form

9(z) =LV(z)#0, Ve X

LoV(z)=k{z)u#0 V(z,u)eW

Natice that this condition implies that, as before, L,V (z) #
0in X.

The immediate consequences of passivity are referred to the
stability of the system evolving under no control actions ap-
plied to the system and the nature of the stability of the zero
dynamics associated to the zero value, for an indefinite pe-
riod of time, of the output function y.

Theorem 2.4 [1] For systems with positive definite storage
functions, the trajectories of the passive (respectively strictly
passive) uncontrolled system, £ = f(z,0), are stable (resp.
asymptaotically stable) around (resp. towards) the origin.
Similarly, ifthe output y of a passive system is held to be zero,
in an indefinite fashion, by means of an appropriate control
input, then the zero dynamics is stable (resp. asymptotically
stable).

2.2 The Kaiman-Yakubovich-Popov conditions

Lef a system of the form (1) be passive, then the follow-
ing two consequences of passivity are usually known as the
Kalman-Yackubovich-Popov (KYP) conditions

Liz0)V <0
ds 0Osdh
LyV = T (10)

The proof of these two relations is as follows. The first one
directly follows from the infinitesimal version of the defini-
tion of passivity (7) and the properties of the supply function

given in (2). Indeed, using the fact that V= LyzmV £
s{y,u) we let u = 0. The second equality of the KYP con-
ditions follows by taking partial derivatives with respect to u
in the first equation of (7).

Notice that in the second equality of the KYP conditions one
clearly identifies two terms; a term due to the general form
of the supply function and a term due to the feed-forward
presence of the input in the output equation.

Example 2.5 Consider the case in which f{z,u)= f(z)+
g(z)u with y = h(z) and s(y,u) = yu, then (10) takes the
form,

LyV(z) <0, LV(z)=h(z)=y (1)
which is a well known form of the KYP conditions (see [1]).
For systems affine in the control form, withy = h(z)+k(z)u,
the KYP conditions are obtained as

LeV(z) L0, LgV(z)=h(z)+2k(z)u =y+ k(z)u
(12)

2.3 Feedback Passivity

Lety : W — U bea C! function of its arguments. A non-
linear static state feedback control law is denoted by the ex-
pression v = y(z,v) withv € U C R.

Definition 2.6 We say that a feedback control law u =
v(z, v) is locally tegular if for all (z,v) € W it follows that

3v/8v#0.

Regularity is regarded as a highly convenient property of
static state feedback control laws since they lead to locally
invertible input coordinate transformations. By the closed
loop system we mean the system & = f(z,v(z,v)), which
we may also denote by ¢ = J(z,v). We also denote by,
h(z,v), the function: h(z,y(z, v)) .

Definition 2.7 Consider a system of the form (1) with an as-
sociated set of scalar functions {V(z),s(y,u)} as defined
above. The system is said to be feedback passive, or it is
said to be rendered passive by means of static state feedback,
if there exists a regular static state feedback control law of
the form, w = y(z,v), such that the closed loop system is
passive with respect to the pair {V,s(y,v)}. In other words,
there exists a positive semi-definite function ¢(z) such that

LT(I:U)V= s(y,v) — ¢(z) (13)

withy = h(z,v(z,v)).
Similarly, if $(z) is a strictly positive definite function, then
the system is said 1o be feedback strictly passive.

The existence of a feedback control law, of the form u =
7(z,v), for which the system is rendered passive must be
assessed from the existence of solutions, for the control input
u, of the following algebraic equation,

Li(z,u)V = s(h(z,u),v) = 6(z) (14)

The following theorem states the conditions under which
feedback passivity is possible.



Theorem 2.8 Let ¢(z) be a given positive semi-definite
scalar function in X. Suppose that the following two con-
ditions are satisfied:

1. There exists a pair of state functions, u = uo(z), and,
v = vo(z), for which the equality (14) holds true, i.e.

Lf(z,un(z))V= s(h(z:uo(z)):vo(z))_¢(I):
VzedX (15

2. the transversality condition,
ds dh
L%V—a—ya—u#() Y(z,u) €W (16)
holds locally valid in W.

Then, there exists a unique static state feedback control law
of the form, u = y(z,v), such that the closed loop system
i=f(z,v), y= k(z, v) is feedback passive with respect to
the pair {V (z).s(y,v)}.

Proof

The proof follows directly from the implicit function theo-
rem.

[}

Example 2.9 In the case where 2 = f(z)+ g(z)u and y =
h(z), with s(y,u) = yu, the condition (16} reduces to the
transversality condition,

LV(z) #0

Under the validity of such a transversality condition, the ex-
istence of a feedback control law of the form, u = a(z) +
B(z)v, is guaranteed. This is obtained from

LV (z)+ ulgV(z) =h(z)v— ¢(z) (17)

and, hence
= ate) ey == P 4 g
The closed loop system
z)/02T
i = (1- o5 -
p(z) h(z)
ey TP vm
satisfies,
. v av/ozT
v = (1= sgp) 1o
#(z) h(z)
- g(I)LgV(I) +g(I)LgV(I)v]

= h{z)v— ¢(z) (20)

2.4 Passivity and Stability

A nonlinear regular static state feedback control law of the
form: u = 7{z,v), which achieves either passivity or
strict passivity by means of state feedback, induces an im-
plicit damping injection which makes the system stable (resp.
asymptotically stable) for certain particular values of the
transformed control input. The meaning of this assertion is
clarified in the following theorems.

Theorem 2.10 Let ¢(z) be a locally positive definite scalar
function in X, Suppose there exists a feedback control law,
u = ~(z,v), which achieves strict passivity of the closed
loop system, with respect to the pair {V (z), 3(y, v)}, (where,
V(z) > 0), then, the control law u = y(z.0) locally asymp-
totically stabilizes the system trajectories to zero.

Proof
Indeed, consider the time derivative of V (z),

. v
vV = az_Tf(x:‘Nx:”)) = s(h(z,7(z, 1)), v) =
- ¢(Z) < 3“‘(217(1:")):”) (2”
If V(z) is positive definite, and use is made of the above
feedback control law with v = 0, then the resulting closed

loop system is asymptotically stable. Indeed, forv =0 we
have

Vo= Itate0)
= s(h(z.7(2,0)).0) = ¢(z) = —9(z) < 0
22
g
Corollary 2.11 Let the system i = [(z.u), ¥y =

h(z.u), with the associated functions {V(z).s(y,u)}
(where V(z) > 0 ), be such that it is rendered passive by
means of the regular nonlinear static state feedback control
law, u = v{z,v), with v being an arbitrary external input.
Then, the control law w = (z,0) renders the zero solution
z(t) = 0 of the system locally stable.

Proof Since the system is feedback passive, then there exists

a positive semi-definite function, ¢(z), such that

Vo= itz )= s(hlza(,0).0) - 9L,
Y(z,v) e W (23)
In particular, for v = 0 we have
. av
V()= 2/ ale, )= —4(z) SO @0

The result of the theorem follows.



3 The Energy Shaping plus Damping Injec-
tion Method

Consider the nonlinear system,

f(z,¢), € R", ueR
h(z,u), y€R (25)

£ =
y =

Associated with the system (25), we hypothesize 2 positive
definite C ' storage function V : ¥ — R*. We then have the
following theorem.

Theorem 3.1 Let the system (25) be a nonlinear system
which may be rendered passive, with respect to the pair
{V(z).s(y.u)} with V(z) > 0, by means of a regular non-
linear static state feedback control law of the form v =
v(z,v). ie. let y(z,v) = T, be the regular static state feed-
back control representing a state dependent solution, param-
eterized by v, of the equality

) = s(h(z,T),v)— ¢(z) 26)

5.7/ (=
Then, the tracking error vector e = z — £, with £ defined as
f(zz“)_ f(z_ Ev7(z_€:0))+
av (e) ] o
e=xz-¢

R(z — —_—

+ R-¢) [ -

with R(e) being an n x n positive semidefinite matrix, such
that

é =

W() awq

R(e)——

is a.rympmtically stable to zero. Moreover, the asympiotic
stability result holds even if R(e) is such that,

+¢(e) > 0 (28)

3V“)R()8V“)+¢u)>o 29)
and
{e] 6;’(7‘) {e.1(e;0)) =0} n
(el R =0)=(0) a0
Proof

Consider the modified stored energy function V (¢ — ). The
time derivative of the modified energy function is given by

aV{e)
8eT

(fz0-€)  on

e=z—§

Vie—¢)=

According to the dynamics assigned to the auxiliary variable
€, it follows that the time derivative of the modified energy

function V (e) is given by

V(C) = aV(g)/aeT f(&"/(e,(]))—R(e)m;ie)]
= V) e e, 0~ S 2L
< - [ot+ 52 Ve "o a

The main result of the theorem follows from fundamental

results of Lyapunov stability theory.
To prove the second part of the theorem, consider the set,

. v
feern V() = Zlise .0 -
av(e)
R(e) 7eT ]=0} (33)
This set clearly coincides with the set,

(ee | 2 e ae, 0= B R0

The left hand side of the last equality, according to the Corol-
lary 2.11, is a negative semi-definite function, while, from
the definition of R(e), the right hand side is a positive semi-
definite function of e. The equality can only be valid over
the set of values of e where both expressions are zero. This
implies that the set is given by

{e ER”lw(e. (e.0))=10}n
(eer Zr2l =0y 04

It follows, according to _the assumption in the theorem, that
the invariance set, { e | V (e)= 0}, is constituted just by the
singleton represented by {e € R™ | e = 0 }. The asymp-
totic stability to zero of the trajectories of the tracking error,
e(t) = z(t) — £(t), follows as a consequence of LaSalle’s
invariance theorem.

s]

4 A Canonical Form for Passive Systems

In this section we show that, under very mild conditions, non-
linear systems enjoy a canonical form which further general-
izes that of systems in Generalized Hamiltonian form treated
extensively in [2].

Theorem 4.1 Let the following condition be satisfied over
all (z,u) in the open set W,

LyV #0 (35)

Then, the system £ = f(z,u), y = h(z, u) can be written in
the form,

i= )+ Szl 3m y=hw) 06



with
J(z,u) + JT(z,u)=0, S(z,u) = 8§T(z,u),
Y (z,v) € W
Proof

Consider the following string of equalities
[z, u)

= f(z,u)+

T =

9f(z.u) [8V]9zT

9 [ L.g{._f/ f(::,u)] -
av/)ozT

_(911 _Lg{_v f(zv")- =

_ df(z,u) [9V/8zT
= (I— I _Lgl__V })[(z,u)+

8f(z.u)

. L

a’ﬁf.,’" az/;f; fo)| =
| 8/T(z,u)

L%V[/(I’“) du -

—

af(z, av
- f(au.u) !T(z!")]a_z-'-

df(z,u) | 8V/0zT
+ 9u {Wf(z, u)} (37)

On the other hand, the term

3f(z,u) [6V/6::T

du

_ 1 [af(z,u)
L;{_V

L%V

(38)

can be decomposed as the sum of two further terms; one con-
taining a symmetric matrix and a second one having a skew-
symmetric matrix.

1 af(z,u) v _
LgV [ u fT(z’“)] 9z

_ 1 [
- 2Lg{_v{[ au fT(z?")+

v ren
+ Qe -

AfT(z,u),) OV

= [@u)=—F; ] e (39)

Combining this last expression with those in (37), one ob-
tains,

L

2L .‘,?.LV L

TI.’I[
e 228

I =

af(z:u)jT(z u)]a_v+
oz

du
1 fT(z,u)
+ 2L5{_Vl'f(z’") ey +
, v
+ af((.;HU)fT(I“)a_I
= Wizt S5 0)
therefore, one has
1 fT(z,u)
J(z.u) = 2L;£VU($’") el
af(z,
- f(a:u)]T(Ilu)]
_ 1 8y (z,u)
S(z,u) = QLH_V[!(Z’H) e +
¢ UEY g, ) @n

a]

According to the last theorem, any nonlinear system for
which the condition (35) is satisfied, can be written in
the above canonical form. If the system is feedback pas-
sive (respectively, feedback strictly passive), one can more
specifically characterize the resulting closed loop. matrix,
S(z,7(z,v)) = §(z,v), as a symmetric negative semi-
definite (respectively negative definite) matrix. This is the
topic of the next theorem where we also denote J (z, 7(z. v))
as J(z,),

Theorem 4.2 Let # = J(z,v),y = h(z,v) be a pas-
sive (resp. strictly passive) system with respect to the pair
{V (z).5(y,v)). Suppose that the condition

L%TV #90 (42)
Then, there exists a neighborhondWC W where the closed
loop system can be written as

¢ = [T(z.v) + S(z,v)] g—: 43)
with
T(z,0)+ T (z,9)=0,
S(z,v) =57(z,v) < 0, (resp. < 0) (44)
Proof

The fact that the closed loop system can be written in the
Generalized Hamiltonian form follows from the assumption
(42) and from the result of the previous theorem 4.1. To
prove the fact that S(z, v) is negative semidefinite or nega-
tive definite, consider the time derivative of the storage func-
tion V(z), and assume, for simplicity, that the closed loop



system is passive (the argument is the same when the closed
loop system is strictly passive),

. v — oV av -
V.= grsevgr=grl/lzv)=
= s(h(z,v(z.v)),v) = ¢(z) (45)
Letting v = 0, one has
v — av
57505 =—9(z) SO VzeX  (46)

Therefore, there exist_sz neighborhood I/ of the origin in U,
and an open subset, X of X, i.e. an open neighborhood w
in the product set W, with il x ¥ = W C W, where the
following assertion is valid,
v — av —_
—=5(z,v)— < . 7
92T (I'b)az—o V(z,v)eW 47)
o

Example 4.3 For affine systems of the form i = f(z) +
g(z)u, y = h(z), where L,V # 0, the canonical form
simply reads as ¢ = (J(z) + S(z))dH/0z + g(z)u, with
J+JT=0and § = ST. The local input coordinate trans-
formation, w = (h(z)/LgV )v, renders the output equation
y=§T(z)0H )0z, with §(z) = g(z)(h(z)/L,V), which is
clearly a Generalized Hamiltonian system (including dissi-
pation and, possibly, de-stabilizing terms).

5 Conclusions

In this article we have extended the notions of passivity to
general single input single output nonlinear systems. The re-
sults completely generalize well established results for the
cases of systems which are affine in the control and for those
systems which have control input feed-forward terms in the
output expression. The Kalman-Yakubovich-Popov condi-
tions are also suitably generalized. The energy shaping plus
damping injection controller design methodology has been
extended to general nonlinear systems. Also, under mild con-
ditions, a general canonical form, of the Generalized Hamil-
tonian form, has been clearly found indicating the conserva-
tive, the dissipation, the de-stabilizing and the external en-
ergy acquisition term. This canonical form has been shown
to be valid for any nonlinear system (see also Sira-Ramirez
{26])) and, in particular, it points to an interesting “energy
managing structure”, which drives the state velocity in terms
of contributions of stored energy gradient projections. The
canonical form conforms to the characterization of passive
and strictly passive systems and it should be quite helpful in
nonlinear feedback controller design tasks.

The obtained results have an important bearing on the general
case of discrete-time systems where an affine in the control
form of the system dynamics is rather questionable. The re-
sults here obtained can be extended, with some technical dif-
ficulties, to the case of general multivariable nonlinear sys-
tems.

6 Acknwoledgment

The second author wishes to express her gratitude to the De-
partment of Electrical Engineering’s Mechatronics Section
of CINVESTAV-IPN (México City) who kindly offered her
their facilities to develop this research during a three-month
stay at CINVESTAV in 1999.

References

{1} Byrnes C.I., Isidori A. and Willems J.C. Passivity, feed-
back equivalence, and the global stabilization of min-
imum phase nonlinear systems. IEEE Trans. on Aut.
Control, Vol. 36, pp. 1228-1240, 1991.

Crouch P.E. and van der Schaft A.J. Variational and
Hamiltonian Control Systems. Lecture Notes in Con-
trol and Information Sciences, 101, Springer-Verlag,
Berlin, 1987.

2

Egeland O. and Godhavn J.M. Passivity-based adaptive
attitude control of a rigid spacecraft. IEEE Trans. on
Aut. Control, Vol. 39, No. 4, pp. 842-846, 1994.

[3

—_—

Fossen T.I. and Strand J.P. Passive nonlinear observer
design for ships using lyapunov methods: full-scale ex-
periments with a supply vessel. Automatica, Vol. 35, pp.
3-16, 1999.

4

—

Hill D.J. and Moylan P. The stability of nonlinear dis-
sipative systems. IEEE Trans. on Aut. Control, Vol. 21,
pp. 708-711, 1976.

[5

[6] Hill D.J. and Moylan P. Stability resulis for nonlinear
feedback systems. Automatica, Vol. 13, pp. 377-382,
1977.

Hill D.J. and Moylan P. Dissipative dynamical systems:
basic input-output and state properties. Journal of the
Franklin Institute, Vol. 309, pp. 327-357, 1980.

[7

—

[8] Johannessen E. and Egeland O. Dynamic positioning
with wave filtering using a passive conlroller structure.
Proc. 32nd Conference on Decision and Control, San
Antonio, Texas, USA, pp. 1903-1907, 1993.

[9] Khalil K. Nonlinear Systems. Prentice-Hall, 1996.

[10] Kokotovié P.V. and Sussmann H.J. A pasitive real con-
dition for global stabilization of nonlinear systems.
Systems and Control Letters, Vol. I3, pp. 125-133,
1989.

{11] Lin W. Feedback stabilization of general nonlinear
control systems: a passive system approach. Systems
and Control Letters, Vol. 25, pp. 41-52, 1995.

[12] Lin W. Synthesis of discrete-time nonlinear systems.
PhD Thesis, 1993.



[13]

[14]

(151

(16]

(17]

(18]

(191

{20]

21

f22]

(23

[24]

[25]

[26]

Lin W. and Byrnes C.l. Passivity and absolute stabi-
lization of a class of discrete-time nonlinear systems.
Automatica, Vol. 31, No. 2, pp. 263-267, 1995.

Lin W. Further results on global stabilization of dis-
crete nonlinear systems. Systems and Control Letters,
Vol. 29, No. 1, pp. 51-59, 1996.

Moylan P. Implications of passivity in a class of nonlin-
ear systems. IEEE Trans. on Aut. Control, Voi. AC-19,
No. 4, pp. 373-381, 1974.

Picci G. and Pinzoni S. On feedback dissipative sys-
tems. Journal of M ath. Systems and Control, Vol. 2, No.
I, pp. 1-30, 1992.

Ortega R. and Spong M. Adaptive motion control of
rigid robots: a tutorial. Automatica, Vol. 25, pp. 877-
888, 1989.

Ortega R. Passivity properties for stabilization of cas-
caded nonlinear systems. Automatica, Vol. 27, No. 2,
pp. 423-424, 1991.

Ortega R.,Loria A., Kelly R. and Praly L. On passivity-
based output feedback global stabilization of Euler-
Lagrange systems. Int. J. Robust and Nonlinear Con-
trol, Vol. 5, pp. 313-324, 1995.

Ortega R., Loria A., Nicklasson P.J. and Sira-Ramirez
H. Passivity based Control of Euler Lagrange Systems.
Mechanical, Electrical and Electromechanical Appli-
cations. Springer-Verlag, London, 1998.

Ortega R., van der Schaft A.J., Maschke B. and Esco-
bar G. Stabilization of port-controlled hamiltonian sys-
tems: passivation and energy-balancing. preprint Au-
tomatica, 1999.

Santosuosso G.L. Passivity of nonlinear systems with
input-output feedthrough. Automatica, Vol. 33, No. 4,
pp. 693-697, 1997.

Sepulchre R., Jankovié M. and Kokotovié¢ P. Con-
structive Nonlinear Control. Springer-Verlag, London,
1997.

Sira-Ramirez H. and Angulo-Nifiez M.l Passivity-
based control of nonlinear chemical processes. Interna-
tional Journal of Control, Vol. 68, pp. 971-996, 1997.

Sira-Ramirez H., Pérez Moreno R.A., Ortega R. and
Garcia Esteban M. Passivity-based controllers for the
stabilization of DC-1-DC power converters. Automat-
ica, Vol. 33, No. 4, pp. 499-513, 1997.

Sira-Ramirez H. A general canonical form for feedback
passivity. International Journal of Control, Special Is-
sue: Recent Advances in the Control of Nonlinear Sys-
tems, Vol. 71, No. 5, pp. 891-905, 1998.

(27]

(28]

(29]

{30]

31

32}

van der Schaft A.J. Ly-gain and Passivity Techniques
in Nonlinear Control. Lecture Notes in Control and In-
formation Sciences, Vol. 218, Springer-Verlag, 1996.

Vidyasagar M. L,-stability of interconnected systems
using a reformulation of the passivity theorem. IEEE
Trans. Circuits and Systems, Vol. CAS-24, No. 11, pp.
637-645,1977.

Willems J.C. Dissipative dynamical systems. Part I:
general theory. Archive for Rational Mechanics and
Analysis, Vol. 45, No. 5, pp. 321-351, 1972.

Willems J.C. Dissipative dynamical systems. Part Il:
linear systems with quadratic supply rates. Archive for
Rational Mechanics and Analysis, Vol. 45, No. 5, pp.
352-393, 1972.

Wu M. and Desoer C.A. Input-output properties of
multiple-input, multiple-output discrete systems: part
{1. Journal of the Franklin Institute, Vol. 290, No. 2, pp.
85-101, 1970.

Zames G. On the input-output stability of time-varying
nonlinear feedback systems. Part I: conditions derived
using concepts of loop gain, conicity, and positivity.
IEEE Trans. on Aut. Control, Vol. AC-11, No. 2, pp.
465-476, 1966.



