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Abstract

A sliding mode controller, which suitably incorporates the
flatness property of the system, is proposed for the effective
equilibrium-to-equilibrium feedback regulation of the angu-
lar position in a permanent magnet (PM) stepping motor de-
scribed in traditional a — b coordinates. The controller is
devised to accomplish off-line planned trajectory tracking
for the system’s flat outputs, indirectly accomplishing a con-
trolled transfer from the initial to the final desired equilib-
rium positions of all system variables.

1 Introduction

The conceptually appealing “hidden linear controllable” fea-
tures of a large class of nonlinear systems can be efficiently
exploited at the controller design stage while benefitting from
their intrinsically simple controller design specification task.
Thus, linearizability properties, although frequently resulting
in rather complex algebraic manipulations and a consequen-
tial lack of parametric and unmodelled external signal robust-
ness, should not be under-estimated, or entirely neglected.
Even though it has been little recognized, differential flat-
ness, unfairly tied to feedback linearization, constitutes a
valuable asset in fecdback controller design, in system analy-
sis and off-line system performance evaluation. Some of the
linearity features provide irreplaceable conceptual character-
istics and design options, such as: closed loop simplicity, ro-
bustness with respect to internal instability problems (i.e., no
zero dynamics problems), design flexibility (a large number
of controller design techniques to which it can be effectively
combined), as well as a complete portrait of the equally im-
portant: “inverse physics”, as “seen” from the system’s most
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internal properties and limitations towards the imposed de-
signer demands. This saddle issue is usually neglected in
place of an alluded “respect” for the system’s direct physi-
cal structure that, strangely enough, is not at all respected at
the final controller specification stage, when inversion of the
control inputs is also carried out.

The theoretical features, and structural possibilities, have
been elegantly bestowed into a single and ubiquitous prop-
erty: differential flatness (see the far reaching theoretical
contributions, and interesting applications examples, devel-
oped by Prof. M. Fliess and his colleagues in [4]-[5]).

In this article, a nonlinear feedback controller is proposed
which effectively combines the differential flatness property
of the nonlinear multivariable stepping motor model with the
robustness of sliding mode controller performance. These
two important methods are shown to be combined in the con-
text of a sliding mode based fecdback controller for the posi-
tion regulation of the stepping motor system.

Section 2 discusses the flatness property of the stepping
motor system, already established in [8], from a slightly dif-
ferent viewpoint. The proposed sliding mode feedback con-
troller is then obtained in terms of the off-line planned tra-
jectories for the flat outputs which effectively stabilize the
entire vector of state variables around a stable equilibriom.
Section 3 presents the simulation results. Section 4 is de-
voted to present some conclusions.

2 A Flatness based Sliding Model Controller
for the PM stepping Motor

The PM stepping motor model used in this article is directly
taken from the work of Zribi and Chiasson [9]. Further devel-
opments of nonlinear state and output feedback control tech-
niques can be found in the articles by Bodson et al [1] and
Chiasson et al [3). An actual experimental sliding mode con-
trol implementation, based on flatness considerations, was
reported in an article by Zribi ef al [10]. The reader is re-
ferred to the book of Leohnard [6] for background in the
area and a complete derivation of the model, starting from
fundamental considerations.



2.1 A Nonlinear model for the permanent magnet step-
ping motor

Consider the following nonlinear model of a permanent mag-
net (PM) stepping motor

dig 1 . .

% - I (va — Riq + Knwsin(N,0))

di 1 .

d—: = Z (Ub — Rip — Kpw COS(NTG))

dw 1 . .

= ( —Kmigsin(N,0) + Kmip cos(N,.0)
—Bw —1)

do

5 = 0)]

where i, represents the current in phase A of the motor, i is
the current in the phase B of the motor, 6 is the angular dis-
placement of the shaft of the motor, v, and vs, stand, respec-
tively, for the voltage applied on the windings of the phase
A and phase B. The parameters R and L, the resistance and
self inductances in each of the phase windings, are constant
and assumed to be perfectly known. Similarly the number
of rotor teeth N,., the torque constant of the motor K, the
rotor load inertia J and the viscous friction B are assumed
known and constant. The load torque perturbation, denoted
by 7, is, for all analysis purposes, assumed to be zero.

2.2 Minimum phase properties of the PM stepping mo-
tor outputs

The equilibrium points (Z,, i, @, 0) of the system, for given
constant values of the voltages v, = v, and vy = vp, are
given by

W= I;’ W= 1;' w=0, o= I\II,arCtm(;:)
1 3
= — arct — 2
N arctan (74) )

Suppose, for a moment, that the, vector relative degree
{1,1}, outputs i, and i, are held constant at some nonzero
value (iq,p) = (Za,16). Then the zero dynamics correspond-
ing to this set of values is given by the nonlinear system

(2 =w; Jdﬁ = —Kmia sin(N,0)+Km;bcos(N,9)—Bw
dt dt 3

A simple algebraic manipulation, which involves the

nonzero quantity 7 = \/72 +72, yields the zero-dynamics
in the form
0 = w

Jo = Kmpcos(N,0+@)— Bw )
with ¢ = arctan(Z,/3%,). The zero dynamics (4) exhibits an
infinite set of critical points Jocated on the w = 0 axis, of the
(9, w) phase plane, at
i
N,

w=0, (k)= (2 +1)’2—r =),

fork =0,%£1,£2,...

Proposition 2.1 The zero dynamics (4) is locally asymptoti-
cally stable towards the equilibrium points

= 1 =
0.0 = & (6+05-9) ©
with § = 0,%1,%2, ...

Proof
To prove this proposition consider the Jacobian lineariza-
tion of the zero dynamics around an arbitrary critical point
(B(k), ) = (7 (2t +1)3 —¢,0). For this, define 85 =
] —g(k) and ws = w
d
@’
a
dt

= ws

ws — [Km N, Psin (N, 0(k) + )] 65 — Bws

= —[KnNFsin (2K + 1)%)] 05 — Buws
(6)

The linearized system (6) is clearly globally asymptot-
ically stable to the origin of incremental coordinates for
those values of k which render the constant factor term
sin((2k +1)%) strictly positive, i.e., for k = 0,£2, 44, ...
The rest of the equilibrium points, k = 1, +3,+5, .. ., clearly
yield an unstable linearized system with two real eigenvalues
of different sign, i.c. the corresponding equilibrium point is
of the saddle type.

o

The system outputs, i, and i, are, thus locally minimum
phase. Since they are also vector relative degree {1, 1}, then
they conform, according to the definitions in [2], a set of pas-
sive outputs.

23 The regulation problem via trajectory tracking

The control objective is to drive the system from a given
initial equilibrium value towards a final equilibrium value
achieving, as a result, a desired final value for the position
variable 6.

We are given a pair of state equilibrium points, denoted by
z! and Z2 specified , respectively, by Z*' = G, @)
andz? = (2, 2, 02,0 )with, @ = @? =0.

The regulation problem we address in this article con-
sists in achieving, by means of a sliding mode based con-
troller which suitably exploits the flatness property of the
stepping motor model, an equilibrium to equilibrium trans-
fer, T8 — T2, in the state space, while accomplishing the
tracking of an off-line prescribed state trajectory joining the
given state equilibrium points. The state trajectory is com-
pletely determined once the flat output trajectories are speci-
fied.



2.4 Differential flatness of the system

Consider the following invertible partial state coordinate
transformation to be performed on system (1) and replacing
the euclidian representation of the currents, i, and 1, by their
corresponding polar representation,

p = i2 +i? ; ¢ = arctan (i>
3

ia = psing ; i, =pcos¢ (@)

The transformed system is, therefore, given by

d
Lap = —Rp— Kywcos(N,0 + ¢) + vy cos ¢
+v, sin ¢
d
Lpﬁqb = Kwsin(N,0 + ¢) —vpsing + v, cos ¢
J%w = Kmnpcos(N.8 + ¢) — Bw
d

The model (8) of the PM stepping motor clearly exhibits
the differential flatness property of the system, since all its
state variables can be completely parameterized in terms of
differential functions of the two independent (flat) outputs,
constituted by the norm p = /32 + iZ of the vector of phase
currents, [ia,45]", and by their angular position variable, 9.
Notice that the transformed state variable ¢ = arctan (i5/4s)
and the angular position, 8, also qualify as flat outputs. A
similar result has also been established for the induction mo-
tor in the interesting work of Martin and Rouchon [7]. For
the flatness of the simpler “d-q coordinates model” of the
permanent magnet stepping motor, the reader is referred to
the articles by [9], [8] and [10].

The flat outputs, denoted by F = (Fy, F2) = (p, 6), yield,
the following complete differential parameterization of the
transformed system variables,

p = R
0 = Fz
= Fzy
B JFy +BF )
¢ = arccos( Kol ) N.F,
. -1
Vg _ cos¢ sing
[ up ] - [ —sing cos¢] X ®

LFy + RPF, + K, F3 cos(N,. F + ¢)

(FER+BE) F—(JFa+BE) .
LF; — N, F.
(. Jram (BreRy
—Kn.F Sin(N,Fg + ¢)

All state variables properties are already reflected in the
above complete differential parameterization, as it can be
easily verified.

For instance, the differential parameterization (9) allows
one to express the phase A and phase B currents, in terms of

the flat outputs. From (7) and (9) we obtain,

Fysin [a.rccos (%) - N,Fz]

JFy + BE;
F cos [arccos (ﬁ) = Ner] (10)

ta

ip

From (9) is readily seen that i and 1, are pasiive_oulpuls.
For this, let 7, and 1, be arbitrary constants, say, 4, 25. Then,
it follows, from the expressions of i, and ¢y that,

JEy = K, (sz + f:) cos [N,Fz + arctan(i.,—")] —BF,

"1 ay
which is the same locally asymptotically stable zero dynam-
ics (4), studied in the previous section.

Other important properties such as constant equilibrium
state detectability, which is specially useful in seeking out-
put feedback regulation schemes based on Lyapunov stabil-
ity theory, can also be assessed from the differential param-
eterization provided by flatness. This issue, however, is not
pursued in this article.

2.5 A sliding mode controller based on flatness

The idea of combining sliding mode control and differential
flatness arises from the fact that the sliding mode controller
while exhibiting a remarkable degree of robustness, it is also
quite easy and natural to implement in many electrical and
electro-mechanical systems.

While flatness allows one to asses the convenience, or in-
convenience, of some desired reference trajectories candi-
dates by exploiting the invertibility of the system, it is gener-
ally conceded that that the linearizability features, inherent in
the flatness approach, are not robust with respect to external
or parametric perturbations and uncertainties. Thus, the flat-
ness property can be advantageously used with sliding mode
control in order to bestow the desired robustness to a suitable
feedback linearization scheme based on flatness.

Secondly, the flat outputs are fundamental system outputs
which are devoid of intemal dynamics and precisely corre-
spond to the linear decoupled multivariable controllability
properties of the system. Hence, indirectly forcing these out-
puts to track pre-specified trajectorics does not, per se, yield
any internal stability problems due to the presence of some
(undesired) zero dynamics.

Consider the following set of decoupled sliding surface co-
ordinates,

s1 = F—Fp(t),

By —F*(t) + az(F2 — F3 (t)) + a1 (Fa — F3 (t))
(12)

s =

Evidently, if s; and sz are forced to converge to zero
in finite time, and control actions guarantee that the slid-
ing surface coordinates evolution are forcefully kept at zero
for all times, then the tracking errors e; = F; — Fy(t) and



ez = Fy — F*(t) evolve according to the following asymp-
totically stable dynamics

e1(t) =0, é&(t) + azés(t) +azes(t) =0

This is achieved by imposing the following decoupled dis-
continuous dynamics on the sliding surface expressions,

$) = —Wj sign 81, $2 = —W,sign s

which immediately lead to the following controllers,

Va _
v -
LTy + RFy + K, Fy cos(N, Fy + ¢)
LF, ( (Ira+BE)R—(JB4BE) —N,Fb)

VKLF}—(IF24BE,)"
—Kn,F Sin(Nng + ¢)

. -1
cos¢ sing

—sing cos¢

(13)
where
I = Fi(t)-w sign (A, —Fy(t))
I3 = [FFO]® —a(Fy - F5(t) — aa(F2 — F5 (1))

W, sign (F — B3 (8)+ aa(F2 — B (1)

+on(Fs - F;(t))) (14)

3 Simulation Results

We consider a PM stepping motor characterized by the fol-
lowing set of parameters

R=84Q L=0010H, K, =005V —s/rad
J=36x10"°N—m —s?/rad,
B=1x10"*N —m —s/rad, N, =50

It was desired to transfer the angular position, 8, from the
initial value of 8" [rad], towards the final value, §° [rad],
following a trajectory specified by means of an interpolating
time polynomial of the form (¢, tq, t;) satisfying,

1/)(tOtha tf) = 0) w(tfyt()ytf) =1 (15)

Thus,
0*(t) =8 +y(t,to,ty) [62— 5‘] (16)

One such possible expression for ¥(t, to, ty), is given by
5
t—to t—to
Pot (t/ - to) [rl " (t/ - to)
2 5
t—to t—to
+r3 (t/—to) Ts (t,—to) :|

x (0r —6o) an

0*(t) =

with
1 =252, r; = 1050, r3 = 1800, r, = 1575,

s = 700, 7¢ =126

and to = 0.01 [s], ¢; = 0.02[s].

The flat output variable, p, was also made to follow a sim-
ilar time trajectory p*(t), taking this coordinate from the ini-
tial value p(to) = 7', towards the final value p(t;) = 5%,
during the same time interval, [to, 7], used for the angular
position change. In other words, we specified p* () as

p*(t) = 7' +¥(t, to, tg) (P* — ") (18)

The initial and final values for the motor shaft angular po-
sition were taken tobe #' = 0 frad)and 8 = 0.02[rad]. The
proposed angular position transfer makes the phase angle, ¢,
take the initial and final values ¢_51 = m/2 = 1.5707 [rad] and
3, = /2= N,8° = 05707 [rad]. This planning helps in
avoiding the condition p = 0, which is required in order to
avoid a singularity in the controller (13).

The nominal initial value of , chosen as Fj (to) = 8 =0
implies, according to (2), that iy(to) = 75 = O with 7, being
arbitrary. We choose, just for convenience, the initial phase
A current to be strictly positive (. = 0.4 A). The planned
trajectory for Fy (t) = p*(t) must also evade the condition
ia(t) = 0, at any time ¢ € [to,t;]. We choose the following
initial value, 7* for p*(t),

Fi(to) =p' =i, =044, 7, =0 (19)

The final value 52 of p can be deduced from the following
equilibrium relations

tan (NB') =30/i0 5 P =@+ G2 @0

which yield
7 = Tasec (N,5") @

Choosing 72 = 0.21588 A, the final value of '} (¢) at time
t7 is found to be, F;(t;) = p° = 0.4 A, and the singularity
condition is thus avoided. The initial and terminal times for
the equilibrium transfer were setto be £o = 0.02sand t; =
0.045s.

In order to avoid the bang-bang behavior of the control
inputs with its associated “chattering” motions of the con-
trolled responses we used a well-known high gain substitu-
tion of the signum functions in the sliding mode controller.
This was accomplished by using:

S3

sign sg «— ————
[} g 2 |83|+€

. 81
sign sy — ————
B T e

The controller design constants Wy, Wy, ¢, az = 26w, and
a1 = w?, were set to be

Wy =100, W, =100, €= 0.005, £ =0.8, w, =10
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Figure 1: PM stepping motor ideal closed loop response to
Sliding + Flatness based controller (a-b coordinates)

Figure 1 shows the simulations of the ideal closed loop
performance of the stepping motor mechanical and electrical
variables, in the a — b coordinates, commanded by the de-
signed sliding mode plus flatness based controller with refer-
ence trajectories planned in terms of the flat outputs.

Figure 2 shows the performance of the sliding plus flat-
ness based controller in the presence of constant, but un-
known, load torque perturbations. The load torque ampli-
tude was taken to be 10™3 N-m. In order to have the sliding
mode controller (implemented with the high gain substitu-
tion) track the planned trajectories we had to increase the pa-
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Figure 2: PM stepping motor closed loop response to Sliding
+ Flatness based controller including load torque perturba-
tion

rameter gains W; and W to a value of 300. With these val-
ves the performance of the controller is practically the same
as the previous ideal one, except that the control input volt-
age amplitudes are now reasonably increased.

4 Conclusions

In this article, we have proposed a combination of “sliding
and flatness” for the feedback regulation of a (nontrivial)
nonlinear multi-variable system constituted by the PM step-
ping motor. The sliding based considerations lead to a nat-
ural feedback controller that takes advantage of the lineariz-
able structure of the system, while creating suitable stabiliz-
ing feedback control actions.

The controlled system comfortably tracks the described
trajectories, thanks to their intimate relation with the hidden
linear controllability properties of the system.
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