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Abstract

An approximate linearization, in combination with a
suitable off-line trajectory planning, is proposed for the
equilibrium to equilibrium regulation of the popular
“ball and beam” system. The results are illustrated by
means of digital computer simulations.

Trajectory planning, Approximate Linearization

1 Introduction

The control of underactuated systems has received sus-
tained attention in the past. Theoretical developments
as well as numerous design examples have been pro-
duced in the last few years, which point to resolve the
main difficulties in controlling this class of systems. For
the state of the art, the reader is referred to a recently
gathered special issue of the International Journal of
Nonlinear and Robust Control.

The “ ball and the beam” system has been the object
of numerous research articles. Important developments
from the viewpoint of approximate feedback lineariza-
tion were given by Hauser et ol in (1], where the ill-
defined nature of the relative degree of the ball posi-
tion was discussed. A constructive approach based on
Lyapunov stability theory was developed in the book
by Sepuichre et al [2). The system was also recognized
to be non-differentially flat in the work of Fliess and
his coworkers, [3], where an interesting procedure was
proposed to approximate the system by means of a flat
system, using a high frequency control and averaging
approach (see also [4]).

In this article, from the perspective of trajectory plan-
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ning, we undertake the problem of feedback controller
design for the “ball and beam” system. A feedback
regulation scheme is proposed for a rest-to-rest equi-
librium maneuver, which does not pass through the (
singular) origin of generalized coordinates. The system
admits an ezact trajectory planning for the beam angu-
lar’s motions in terms of the desired nominal displace-
ment of the ball along the beam. However, the differen-
tial equation which allows the angular displacement ex-
act trajectory planning, exhibits a discontinuous right
hand side. This fact does not allow further use of this
trajectory planning option since, in this case, second
order derivatives of the nominal angular motions are
required for obtaining the nominal input reference tra-
jectory. By approximating the system to a differentially
flat system, an approximate nominal state and control
input trajectories can then be off-line computed. We
show that the obtained approximation is remarkably
close to the exactly computed one, as far as the beam
angular motions are concerned. The feedback scheme is
completed by using an incremental time-varying linear
feedback controller, obtained by recently developed al-
gebraic techniques in an article by Fliess and Rudolph
[5). The proposed controller is shown to sustain sub-
stantial initial state perturbations. An output feedback
controller, based on a time-varying state observer, is
also designed, and its performance tested by means of
computer simulations.

2 The ball and the beam system and some of
its properties

Consider the ball and the beam system shown in Figure

1. Adopting as generalized coordinates, ¢ = [r,4]T, the
kinetic co-energy function is then given by

T(r,7,6) =% [(J +Jp +mr?)f? + (m + %)r'”]

where J is the beam’s moment of inertia around the
rotating pivot, Jp is the ball’s moment of inertia with



respect to its center, R is the ball radius and m is its
mass.

On the other hand, the potential energy of the system
is given by V(g) = mgrsin#.

The Lagrangian of the system is therefore expressed as
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L(r,7,0,0) =

Applying the Euler-Lagrange equations it is readily
found that the mathematical model for the “ball and
beam” system is given by,

m+ Is 0 7
R? d +
0 mr2+J+Jp
0 —mrf # mgsin@
mr mrt 0 mgr cosd
It is easily verified that the following two crucial prop-
erties are valid.
Property 1.

The matrix D(g,4) D(g) — 2C(g,q) is skew-

symmetric.
Praoperty 2.
The map
= (2] - ]
is passive.
Proof

Consider the total energy function H(g,4) =
147 D(q)4 +V (q). The time derivative of this function,
along the trajectories of the system, is given by
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Thus, the model is of the general form: Dg+C(q, §)g+
K(q) =F, with

_ s im 0
Dla) = [RO mr"'+J+JB]
N 0 —mrb
Cl@d) = mré  mrf ] ’
mgsin@ |0
Kia) mgr cosf ] - [ T ]

The ball position variable on the beam, r, has been
shown to have an ill defined relative degree (“in fact,
between 3 and 4" ) (see [1]). The system is, therefore,
non feedback linearizable by means of static state feed-
back. Hence, it is also not linearizable by means of
dynamic state feedback. The equilibrium manifold of
the system corresponds to a perfectly horizontal posi-
tion of the beam # = 0, with no translational motions
of the ball, which can be located at any distance from
the origin, r = constant.

3 Off-line Trajectory Planning

The lack of feedback linearizability of the system pre-
cludes a direct trajectory planning approach for the sta-
blization of the system motions about the equilibrium
manifold, of which we must, necessarily, exclude the
origin.

Suppose it is desired to realize, in a finite time in-
terval [t;,ts], an equilibrium to equilibrium transfer
maneuver of the sliding ball by inducing a controlled
displacement, from a given initial equilibrium posi-
tion: (r(;),0(t;)) = (Tinit,0), towards a second equi-
librium position, (r(ts),8(ts)) = (rfinat,0), with, say,
Pfinal < Tinitial and such that, 0 ¢ [Finit, 7 finat]- Sup-
pose that a nominal trajectory for the required transfer
is specified for the position coordinate of the ball, r as,

Tinit fort <t
Tinit + (Pfinat — Pinit)W(E, iy tr)

r*(t) = fort; <t <t
Tfinal fort > tf

where the function, ¥(¢,¢;, t7), is a sufficiently smooth
polynomial spline satisfying: ¥(t;,t,¢ty) = 0 and
¢(tf)tht!) =1

3.1 Exact off-line trajectory planning

From the first equation in (2) we obtain the following
implicit differential equation for the required nominal
angular displacement, 8*(t), in terms of the nominal
longitudinal displacement, r*(t)

mr* (t)[6* ()] = mgsin(6* (¢)) + (% + m) (1) (3
Il



The following ezplicit differential equation for 8*(t) is
then readily obtained from (3) by elementary physical,
and simple mathematical feasibility, considerations on

the system.
mgsin(8°(t)) + (3% +m) 7 (¢) '
- l mr*(t)

- { mgsin(6*(t)) + (% +m) i"(tz}

* (1)

mr*(t)
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where “sign” stands for the signum function.

Figure 2 shows a typical simulation of the differential
equation (4) with the following parameters: m = 0.11
[Kg], R=0.015 [m], L=0.5 [m], Jg =10° [N-m/s’],
J = 102 [N-m/s’], Tinit = 0.8 [m], rfina = 0.3
[m], and a polynomial spline “smoothly” interpolating

between 0 and 1,
t—t;\° t—t;
(tf—t.-) b 72(tf—t.~ *

-n(*‘t")a] 5)

ty—t;

¢(t1 ti) tf)

m= 252, Y2 = 1050, Y3 = 1800, T4 = 1575, 5 = 700,
76 = 126
and t; = 2 [s}, ty = 5.5 [s].

Unfortunately, any traditional controller design strat-
egy based on the previous off-line trajectory planning
proves to be unfeasible, due to the lack of differentia-
bility of the planned angular velocity, needed to off-line
compute the nominal torque input. However, the ex-
act solution obtained from (4) allows one to partially
validate approximate solution schemes, such as the one
proposed in the next section.

3.2 Approximate off-line trajectory planning

If we disregard the centripetal force term : —mré?, in
the first equation of the system (2), an approximate
trajectory planning can then be performed in terms of
the following resulting relation,

g5 (t) = — arcsin [3 (1 + ;’%;) i (t)] (6)

Figure 3 shows that, for a sufficiently slow transfer ma-
neuver which guarantees small centripetal forces, the
approximation (6) is rather good, when compared with
the exact angular trajectory planning. In the simula-
tion obtaining this figure we used the same parameters
as before which guarantee a small centripetal force.

The approximate relation (6), makes of the ball po-
sition, r, a flat output which allows us to compute a
nominal reference trajectory for the torque input vari-
able. Using the second equation in (2), we obtain

mgr* (£) cos(62 (£)) + 2Zmr* ()7 (£)02(2)
+(m[r* @O + J + JB)d(D) )

) =

4 Feedback controller design

4.1 A state feedback controller

Define incremental state and input variables as: 715 =
r—r*(t), ra5 = r—7*(t), 01,56 = 0-0;(t), 625 = 0-63(t)
and us =7 —-71°(t).

The linearization of the system around the nominal
trajectory (r*(t), #* (t), 62 (t), 05(t), u* (2)) is of the form,
5 = A(t)zs + b(t)us, with,

0 1 0 0
SR an(t) 0 ax(t) au(t)
S 0 0 0 1| %
an(t) on(t) ap(t) au(t)
0
0
+ 0 us,
by(2)
LW
—_ r2,6
L ®
028

For trajectories not including the origin of coordinates,
the linear time-varying system (8) is found to be uni-
formly controllable according to the rank criterion es-
tablished by Silverman and Meadows [6]. The rank
criterion is tested on the controllability matrix:

= [ b(t)v (A_‘ %)b(t), cey (A_ %)3{)(” ]

We propose, following [5], an incremental linear time-
varying state feedback controller, for the stabilization
of the linearized system, which is of the form,

ug = —kT(t)zs = ki (t)r1,6 — ka(8)ra,s — ka(t)brs
—k4(t)02,5

W,'ith time—vmying gams, {kl (t)v kﬁ (t)y ks (t)’ k4 (t)}y cho-
sen so that the instantaneous characteristic polyno-
mial of the closed loop system matrix, computed as:
p(\) = det[AI — A(t) + b(£)kT), exhibits constant coef-
ficients which coincide with those of a Hurwitz polyno-
mial of the form, p(A) = A + 142% + 13X + 2 A + 71,
whose roots are located sufficiently deep into the left
portion of the complex plane. This procedure, used



in [5], within the context of linear time-varying Luen-
berger observer design, is valid -and it is known to guar-
antee exponential stability of the origin of the closed
loop linearized system- thanks to the fact that the co-
efficients of the open loop linearized system matrices,
A(t), b(t), belong to a Hardy field. A Hardy field being
one in which the largest “comparability class” is con-
stituted by exponential functions of time (see [5] for
further details).

The time-varying gains are computed as

1 2
m [Gn (023 - 024’74)
+a23(az2173 + 71 + aa1023)
—anaz(anaz + ’72)]

1

ki (t)

k(t) = ————5 [a2s(a + a3a42 +

2(t) o _021034)64[ 23(82174 + G23a42 + 72)
—a21024(a21 + 642824 + 73) — 71024]

1

ks(f) = L flan(as—a

3(t) (=TT [(a21(a23 — 62474)
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The feedback controller for the nonlinear system is then
synthesized as,

T =7(t) + us = () — kT (t)(z — z*(t))

Figure 4 shows the performance of the proposed feeback
controller based on approximate linearization around
the off-line planned trajectory. The constant closed
loop poles were all set to be located at the real value
—2. As it can be seen, the proposed controller has a
good performance even if significant initial deviations
are allowed for the ball and the beam positions from
the nominal initial unstable equilibrium value of the
desired trajectory.

4.2 An output feedback controller

For trajectories not including the origin of coordinates,
the linearized system (8) with incremental output vari-
able, ys = r,s = czs = [1,0,0,0]zs, is found to be
uniformly observable, according to the rank criterion
of Silverman and Meadows [6], conducted on the ob-
servability matrix:

T
0=[e7,(40 - FIT (A - ]

A state observer of the Luenberger type, is given by,

285 = A3 + be)us + HOWs ~ )

with §5 = #1,5 and H(t) being a column vector,
with components h; (t), ..., ha(t), constituted by time-
varying gains. A set of observer gains, can then be
computed so that the polynomial: g(A\) = det[\ —
A(t) + H(t)c), has constant coefficients coinciding with
those of a Hurwitz polynomial of the form: g¢()\) =
A4 B4 A% 4+ 8322+ B2 A+ B, . Since, again, the coefficients
of the matrices A(t) and, evidently, those of ¢, belong
to a Hardy field, the proposed observer is guaranteed
to exponentially asymptotically estimate the state of
the incremental system (8).

The observer gains are computed as

hi(t) = Bui+au

ha(t) = (Ba +G44)044 + B3 + @43 + ag2a24 + a2
M3az3 — G244

ha(t) =

a2, + a24(a23844 — G24043)
myas3 + m3(a23644 — G24043)

ha(t

® a2, + 624(a23044 — G24043)
with

ma(t) = P2+ a42a23 — a21844 + G01G24

+(Bs + a44)(a43 + a42024)
+a44 [(B1 + 644)Ga4 + B3 + 43 + a42024 + a21)
m4(t) = Pr — 621843 + Ga1a23 + (B4 + 644)asza23
+0643 [(Ba + a44)0a4 + B3 + Ga3 + a42824 + 621}

The estimated state vector, £3, is then used in the syn-
thesis of the state feedback law derived in the previous

section
T =7"(t) - kT (t)%s

Figure 5 shows the simulations results of the closed loop
output feedback controlled nonlinear system subject to
significant initial deviations from the proposed nominal
trajectory and reasonable initial estimation errors.

5 Conclusions

In this article we have provided a state as well as an out-
put feedback regulation schemes for the ball and beam
system, which are based on trajectory planning and
approximate linearization around a prescribed nomi-
nal trajectory computed from a differentially flat ap-
proximation of the nonlinear system dynamics. The
resulting time-varying linearized system controller and
observer designs are carried out by placing the poles of
the closed loop system and of the estimation error dy-
namics in constant locations of the complex plane suf-
ficiently bounded away from the imaginary axis. The
regulator and observer design techniques can be used
thanks to the fact that the coefficients of the open loop
system matrices belong to a Hardy field.



The proposed method can also be extended to deal with
more difficult maneuvers including trajectory tracking
problems. It can also be partially used in hybrid control
schemes, geared to avoid the singularity implied in a
transfer maneuver that includes passing through, or
resting at, the origin of the system position coordinates.
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Figure 1: Ball and Beam system.

[m]
0.81 * t
0.7 r
N (t)
0.5
0.4
0.31
T T T T T T T 1
-1 0 1 2 3 4 5 6 7 8
time [s]
0.10- [rad]
6*(t)
0.004
-0.05
0.1 T T T~ 1 T T "1
4 0 1 2 3 4 5 6 7 8
time [s]
Figure 2: Off line trajectory planning.
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Figure 3: Approximate off-line trajectory planning and
centripetal force magnitude.
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Figure 4: Closed loop performance of feedback controller
based on approximate linearzation.

3701 2 3 4567 8 9 1011213
time (s]

0052 6(t)
B b

Lo T

301 23 456789101 1213

[N-m] time [s}

T

[=X=F=Fa=)

3 4 56 7 8 9 1011 12 13
time {s}

t T T

10 1

Figure 5: Closed loop performance of output feedback
controller based on approximate linearzation.
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Figure 6: Estimator generated state tracking errors.



