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Abstract

A reapproachment to chaotic systems synchronization is
presented from the perspective of passivity-based state
observer design in the context of Generalized Hamil-
tonian systems including dissipation and de-stabilizing
vector fields. The synchronization and lack of synchro-
nization of several well studied chaotic systems is re-
explained in these terms.

Keywords: Synchronization} Chaotic Systems, Passivity
based observers

1 Introduction

Synchronization of chaotic systems has received a lot
of attention from mathematicians, physicists and con-
trol engineers in the last decade. Three special issues
of major journals (see [6], [7], [8]) have been devoted
to the problem of chaos, in general, and synchroniza-
tion and control of chaotic systems, in particular. Aside
from several edited books on the subject, a staggering
collection of references has been collected by Professor
G. Chen in [2]. The enormous interest in the topic of
synchronization arises from the possibilities of encod-
ing, or masking, messages using as analog “carriers” the
chaotic signal generated as a state, or as an output, of a
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chaotic system, called the “transmitter”. The effectively
random nature of the carrier signal, additively, or mul-
tiplicatively modulated by the masked message signal,
makes it, to say the least, “dis-encouraging” to attempt
the decoding of the message from the intercepted signal
(see the article by Cuomo et al [3]).

In this article, we are only concerned with the synchro-
nization issue for chaotic systems, from the perspec-
tive of Generalized Hamiltonian systems including non-
conservative terms. It turns out that the great major-
ity of chaotic systems can be placed in such a General-
ized Hamiltonian canonical form, from where the recon-
structibility of the state vector, from a defined output
signal, may be assessed from the observability or, in its
absence, the detectability of a pair of constant matrices.
The Generalized Hamiltonian structure of most known
chaotic systems allows one to clearly decide on the na-
ture of the synchronizing (output) signal on the basis of
the system dissipation and conservative energy manag-
ing structure and a need for elimination, at the receiver
end, of the locally, or globally, de-stabilizing vector field.

2 Nonlinear observer design for a Class of
Systems in Generalized Hamiltonian Form

We consider a special class of Generalized Hamiltonian
systems with de-stabilizing vector fields and linear out-

put map , y, given by
. 8H 8H n
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where S is a constant symmetric matrix, not necessarily
of definite sign. The matrix Z is a constant skew sym-
metric matrix. The vector variable y is referred to as
the system output. The matrix C is a constant matrix.

We denote the estimate of the state vector z by £, and
consider the Hamiltonian energy function H(£) to be
the particularization of H in terms of £. Similarly, we
denote by 7 the estimated output, computed in terms
of the estimated state £. The gradient vector 6H (£)/8¢
is, naturally, of the form M¢ with M being a, constant,
symmetric positive definite matrix.

A dynamic nonlinear state observer for the system (2.1)
is readily obtained as

é = J(y)%+(z+5)3a—’z+f(y>+x(y—n)
OH
n = & (2.2)

where K is a constant vector, known as the observer
gain.

The state estimation error, defined as e = z — £ and
the output estimation error, defined as ey, = y —1, are
governed by

J(y)%+ z+5-kc) 20, cerr
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where the vector, H/de actually stands, with some
abuse of notation, for the gradient vector of the mod-
ified energy function, 8H (e)/8e = 8H/dz — 8H/8¢t =
M(z — €) = Me. Below, we set, when needed, Z+S =
W.

Definition 2.1 Given a pair of constant matrices
(C, A), respectively of dimensions m xn andn xn. The
pair is said to be detectable if the matriz

[d‘iA] (2.4)

has full rank n for all values of s in the open right half of
the complex plane. The system is said to be observable
if the above matriz is full rank for all values of s in the
complez plane.

Theorem 2.2 The state z of the nonlinear system
(2.1) can be globally exponentially asymptotically esti-
mated by the state £ of an observer of the form (2.2), if
the pair of matrices (C, W), or the pair (C,S), is either
observable or, at least, detectable.

An observability condition on the either the pair (C, W),
or the pair (C,S), is clearly a sufficient but not neces-
sary condition for agsymptotic state reconstruction. The
following simple example readily demonstrates this is-
sue.

Example 2.3 The pair of matrices

s:[‘ol _01], c=[0 1]

constitutes a non-observable, although it is a detectable
pair. Nevertheless, setting K = 0 already renders the
sum, 2[S — 3(KC + CTKT)] = 25, as a negative defi-
nite mairiz.

Theorem 2.4 The state z of the nonlinear system
(2.1) can be globally ezponentially asymptotically esti-
mated, by the state £ of the observer (2.2) if and only if
there exists a constant matriz K such that the symmetric
matriz

W — KC]+[W - KCIT =[S —kc]+ [S - k]

~ [s - % (kc+ cT/cT)] (2.5)

i3 negative definite.

3 Applications to Synchronization of Chaotic
Circuits

3.1 Chen’s Chaotic Attractor
Consider now Chen’s chaotic attractor. This system is
described by the following set of differential equations

% = afz;—21)
Z; = (c—a)zy— 7173+ c32
:i?s = 19 — b:tg (3.1)

Taking as a Hamiltonian energy function the scalar func-
tion
1
H(z) = 3 [#? + 23 + 2] (3.2)

we write the system in Generalized Hamiltonian Canon-
ical form as
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Choosing the output as y = z; one obtains,

—a ¢/2 0
Cc =100, S=|¢2 ¢ 0|,
0 0 -b
0 a—c/2 0
I=| —a+c/2 0 0 (3.4)
0 0 0

The pair of matrices (C,S) already constitute a de-
tectable, but not observable, pair. The addition to S
of the matrix Z does not improve the lack of observ-
ability. In this case, clearly, the unstable nature of the
observable eigenvalues of S requires the introduction of
damping through the output error injection map and
proceed to place the eigenvalues of the observable part
of the dissipative structure of the reconstruction error in
suitable (asymptotically) stable locations in the complex
plane. This results in the receiver,

5:1 0 a—c/2 0

& = —a+c¢/2 0 -z %—H

é:! 0 n 0 §
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The synchronization error, corresponding to this re-
ceiver, is found to be
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We may now prescribe K, K5 and K3 in order to ensure
asymptotic stability to zero of the synchronization error.
This is achieved by setting K; > c—a, K3 > ¢/2+2(a +
K,). We may set K3 = 0 since it has no influence on the
observable eigenvalues of the non-conservative structure
of the system.

Figure 1 shows the performance of the designed receiver
with the following parameter values for the system and
for the constant gains.

0235, b=3, C=28, Kl =2, K2=100, K3=0

3.2 The hysteretic circuit
Consider the following nonlinear circuit equations
treated by Carroll and Pecora in [1]

£ = 2o+ 7421 +C23
£ = —wz —0z
ei3 = (1—23)(s21 +23) — Bza (3.6)

The system can be written in Generalized Hamiltonian
canonical form with the energy function given by

H(:r)=%[zf+z§+e:c§] (3.7)
Indeed,
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The destabilizing vector field requires two signals for
complete cancellation at the receiver. Namely, the vari-
ables, z; and z3. The output is then chosen as the
vector y = [y1,42]7 = [z1,€23)7. The C and S matrices

are given by
_[a]l [ro0o0
e - [&]-[as 3]
l1-w) F(c+9)
S = %(l—w)e -4 0
L(c+s) 0 -56-1

The pair (C,S) is observable, and hence detectable. In
order to achieve chaotic behavior, § is, in general, a
small number, and the S matrix is therefore of indefi-
nite sign. This means that the required receiver needs
to add “multivariable” damping, through an output re-
construction error vector injection. However, one can
easily avoid the multivariable pole placement problem
by observing that the pair of matrices (C;,S) is also
an observable pair. An injection of the synchronization
error e; = 71 — & suffices to have an asymptotically
stable trajectory convergence. The receiver would then
be designed, exploiting this last observation, as follows.

&
@ =
&

0 11+w) £(c-9)
—1(1+ w)e ’ 0 ’ 0 %—H
—3(c—8) 0 0 ¢



v Hl-w) Z(c+9)
| ta—we T-s 0 o %
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Figure 2 shows the performance of the proposed syn-
chronization scheme. The chosen parameters were set,
following [5], as

0.2, ¢c=2, w=10, §=0.001, s =1.667,

B8 =0001, ¢=03 (3.8)

with receiver parameter gains: K; = 7.198, K; =
—17.988 and K3 = 13.927.

'y:

3.3 The Mitschke-Fliiggen hybrid optical bi-
stable chaotic system

In [4] an analog circuit is proposed as a model of an hy-
brid optical bi-stable system (see Figure 3). The circuit
equations are given by

. _ 17 Y
2 = R[z;+u’(z3 ,;)]
d
Lm% = —Rpzy—z3+121
d
Cm% = 1 (3.9)

where z; is the voltage accross the capacitor C, z5 is the
current through the inductor and z; is the voltage in
the second capacitor C,, The total stored energy in the
system can be taken as the positive definite Hamiltonian
function

H(z) = % ([Cz? + Lina3 + Cnzl] (3.10)

This leads to the following system in Generalized Hamil-
tonian canonical form

S
2CLm 0

i 0
e L Ctm 4| 0H
Z2 = 2CLn ImCm | 3z
%3 0 e 0
— -1 = 0 Ly gy — p)?
2 2CLm 3
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The de-stabilizing presence of z; suggests that the out-

put of the transmitter should be the voltage variable
y = z3. This implies that the matrices C, S and T are
given by

1 1 0
1 RCT  3CLm
¢ = [o,0, C_]’ S$=| sz ~1mx 0|,
m 0 0 0
0 w0
T = 3CLn 0 “Ln.Cm

The pair of matrices (C,S) is not observable but it is
detectable. However, The pair of matrices, (C, W), with
W given by

B
W= &1 _ﬁ R o (8-11)
0 LyCem

is found to be observable. In order to add suitable damp-
ing to the synchronization error dynamics an ouput re-
construction error injection is needed. A receiver can
then be designed as

& e S % |ex
| = CL. “Im' TL:Cn |pe
& 0 o
7V —n? K,
+ 0 +| Kz | (y—&)
0 Ks

To guarantee asymptotic stability of the error dynamics,
it suffices to choose K;, K3, K3 as arbitrary strictly
positive constants.

The synchronization error evolves according to
0 —K

. 1
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4 Conclusions

In this article, we have approached the problem of syn-
chronization of chaotic systems from the perspective of
Generalized Hamiltonian systems including dissipation
and destabilising terms. The approach allows to give
a simple design procedure for the receiver system and
clarifies the issue of deciding on the nature of the out-
put signal to be transmitted. This may be accomplished
on the basis of a simple linear detectability or observ-
ability test. Several chaotic systems were analyzed from
this new perspective and their possibilities for synchro-
nization were either confirmed, in the case of already
obtained positive results, or it was explained in those
cases where there is a known lack of synchronization.
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