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Abstract

A passivity based controller, which suitably incorporates
the flatness property of the system, is proposed for the
effective equilibrium-to-equilibrium feedback regulation
of the angular position in a permanent magnet (PM)
stepping motor described in traditional a — b coordi-
nates.
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1 Introduction

In this article, a nonlinear feedback controller is pro-
posed which effectively combines the natural energy dis-
sipation properties of the PM stepping motor system
with its differential flatness property (see Fliess et al
{1]). These two important structural properties of the
system can be combined in the context of a dynamic
passivity based feedback controller. The proposed con-
troller naturally arises from “energy modification and
damping injection” considerations achievable on the ba-
sis of identifying, and exploiting, the natural “conser-
vative and dissipation” structure of the nonlinear sys-
tem dynamics and a complete identification and advan-
tageous use of the hidden linear controllable features of
the system, represented by the flat output. The passiv-
ity based controller translates into an efficient control
scheme which allows for an equilibrium-to-equilibrium
stabilization task, based on off-line planned trajectories
prescriptions and on-line feedback trajectory tracking.

An energy shaping plus damping injection based dy-
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namic feedback controller is synthesized in Section 2
which requires knowledge of the passive outputs ref-
erence trajectories achieving the desired equilibrium to
equilibrium stabilization. The flatness property of the
stepping motor system, already established in [2], is fur-
ther discussed in Section 2 the context of passivity (see
[3]). The passive outputs trajectories, which, due to flat-
ness, are parameterized in terms of flat outputs trajecto-
ries, are then used in the feedback controller expregsion.
Section 3 presents the simulation results. Section 4 is
devoted to some conclusions.

2 A Passivity plus Flatness based Controller
for the PM Stepper Motor

The PM stepper motor model used in this article is di-
rectly taken from the work of Zribi and Chiasson [4].
An actual experimental sliding mode control implemen-
tation, based on flatness considerations, was reported in
an article by Zribi et al [5].

2.1 A Nonlinear model for the permanent mag-
net stepper motor

Consider the following nonlinear model of a permanent
magnet (PM) stepper motor

di, 1 . .

% = I (ve — Ris + Kpwsin(N,6))

di 1 .

étﬁ = 3 (vs — Rip — Kw cos(N,.6))

%;’_ - ; (=Kmia Sin(N,6) + Koy cos(IV,8)
—-Bw-7)

df

pead 1
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where i, represents the current in phase A of the motor,
1y is the current in the phase B of the motor, § is the
angular displacement of the shaft of the motor, v, and
vp, stand, respectively, for the voltage applied on the
windings of the phase A and phase B. The parameters



R and L, the resistance and self inductances in each
of the phase windings, are constant and assumed to be
perfectly known. Similarly the number of rotor teeth
N,., the torque constant of the motor K,,, the rotor load
inertia J and the viscous friction B are assumed known
and constant. The load torque perturbation, denoted
by 7, is, for all analysis purposes, assumed to be zero.

2.2 Passivity properties of the PM stepper mo-
tor

The equilibrium points (i,,%,@, §) of the system, for
given constant values of the voltages v, = ¥, and v, =
Ty, are given by

ia = 17b=_7 “‘J:Oy

[

Proposition 2.1 The zero dynamics associated to con-
stant equilibrium values of the outputs i, and i, is locally
asymptotically stable towards the equilibrium points,

%k =5 (4i+ 0] -9)

with j =0,%1,+2, ...

The system outputs, i, and i, are, thus locally minimum
phase. Since they are also vector relative degree {1, 1},
then they conform a set of passive outputs.

Consider the following positive definite energy storage
function

1
V(ia,ip,w,8) = 3 [LG2 + D) + Jw? +46°)

with 4 > 0. The time derivative of V, along the con-
trolled motions satisfies

. [
1% < (va +'}"_—w) 1 + Uptp
a

The system is thus passive between the modified inputs
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and the outputs i, and i.

2.3 The regulation problem via trajectory track-
ing

The control objective is to drive the system from a
given initial equilibrium value towards a final equilib-
rium value achieving, as a result, a desired final value
for the position variable .

We are given a pair of state equilibrium points, de-
noted by ' and % specified , respectively, by 7! =
G5 5,0) and 2 = (G2, 5,92, )with, @' =@? =0
and 7, # 0 for j = 1,2. The regulation problem we
address in this article consists in achieving, by means of
a passivity based controller which suitably exploits the
flatness property of the stepping motor model, an equi-
librium to equilibrium transfer: ! — Z2 in the state
space, while accomplishing the tracking of an off-line
prescribed state trajectory joining the given state equi-
librium points.

2.4 A feedback controller based on “energy
shaping plus damping injection”

The “energy shaping plus damping injection” dynamic
feedback controller design method, extensively treated
in (3], yields, the following dynamical feedback controller
specification,

B = LZ33(0) = Kn sin(N0) + R (0) + 7onty

9 = L%i; (£) + KmCi cos(N,6) + RiJ(t)  (2.3)
with ¢; and (3, satisfying,
J& = =B — Kpit(t)sin(N,8)
+ Knij(t)cos(N8) + R (w— Gi)
16 = 'r%i: (&) + Re(6 - (2) (2.4)

where Rp, Ry are strictly positive design constants en-
hancing the closed loop system damping structure.

The original control inputs to the system are determined
from the equalities,

w
V== ; ="t (2.5)
ta
Proposition 2.2 The passivity based dynamic

Jeedback  controller yields a state vector track-
ing ervor dynamics, described by the vector,
e = [ia—it() iy —i5(0),w—C1,0 — ), which is
globdally ezponentially asymptotically stable to zero.

Proof Substituting the control input expressions (2.3)
into the a-b coordinates system model (2.1), and using
the set of differential equations (2.4), we obtain, after
rearrangement,

Léy = Kpsin(N,8)es — 'y%e., — Re,

Lé; = —K,co8(N.6)es — Re;

Jés = —Kpsin(N,.8)e; + K, cos(N.0)ea
—(B + Rp)es

vés = ’7%81 — Rges =0



Using the modified energy function V(e)
L (Le? + LeZ + Je} + ve}), one establishes that
—R(ef +€3) — (B + Rp)e; — Roe}

2min{R,B + R, Ry}
<- —max{L, 1} Vie) (2:6)

Vi) =

ie., V(e) < —aV(e), with a being a strictly positive
constant dependent upon the system parameters L,J,
R and B and the design parameters, Rp, Ry, and 7.

The tracking error is globally exponentially asymptoti-
cally stable to zero, i.e.

fa—ris(t), B is(t), w—= G, 626 (27)

In the absence of load perturbations, r, the desired cur-
rents i3(t) and i}(t) are made to converge to suitable
constant values. As a consequence, , and i, also con-
verge to the prescribed constant values. The outputs
i, and iy were shown to be passive, hence, the angular
velocity, w, asymptotically converges to zero. It follows
that the auxiliary variable, {;, also converges to zero.
The angle 6, and the auxiliary state (3, both converge
to a constant value, to be established later. The flatness
property allows to completely parametrize, in an invert-
ible manner, the passive outputs trajectories, ¢} (t) and
i3 (t), in terms of desired trajectories for the angular po-
sition # and the norm of the vector of phase currents,

(iay ib)'

2.5 Differential flatness of the system
Consider the following invertible partial state coordinate
transformation to be performed on system (2.1),

p i2 +i? ; ¢ = arctan (:—“)

b
psing ; i, = pcos¢ (2.8)

ia

The transformed system is given by

L%p —Rp— Kywcos(N.8 + ¢) + vy cos
+v,siné
p%d) = Kpwsin(N,0 +¢) — vysing
+ wvgcos¢
J%w = Kppcos(N.8+ ¢)— Bw
%0 = w (2.9)

The model (2.9) of the PM stepper motor clearly ex-
hibits the differential flatness property of the system,

since all its variables can be completely parameterized
in terms of differential functions of the independent
flat outputs. Notice that the transformed state variable
¢ = arctan (i,/1;) and the angular position, 8, also qual-
ify as flat outputs. For the flatness of the simpler “d-q
coordinates model” of the permanent magnet stepper
motor, the reader is referred to the articles by [4], {2]
and {5].

The flatness property allows one to express the phase A
and phase B currents, in terms of the flat outputs. From
(2.8) we obtain,

i3 + BE;
F; sin l:a.rccos (b) - N,-F'z]

ia

KmFl

JE, + BE,
F, = " *\|-=N.,F,
1 Co8 [arccos ( K Fl ) ” 2]
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Other important properties, such as constant equilib-
rium state detectability, specially useful when output
feedback regulation schemes are sought, can also be as-
sessed from the differential parameterization provided
by flatness. This issue is not pursued in this article.

2.6 A dynamic controller combining passivity
and flatness

The passivity based controller, exploiting the flatness
property of the system, is given by,

¥, = L%ii(t) — K sin(N0) + Ril(¢) + 7iﬁg,
0 = L%i; () + Ky cos(N,.6) + Riy(t) (2.10)

with {; and (3, satisfying,

JG = =BG — Kpis(t) sin(N,6)
+Kmi} () cos(N8) + Rg (w — (1)
ve = 7§i:(t)+m(o—cz) (2.11)

with the current reference trajectories ij(t) and i} (¢),
given by

i;(t) = F{(t)sin [arccos (W)
—N.F; (t)]

i(t) = F{(t)cos [arccos (%};;g;(t))
-N.F 2.12)



The advantages of the proposed combination are mani-
fold. First, if a passivity based controller has been de-
signed, on the basis of physical energy dissipation con-
siderations, the controller actions tend to take advan-
tage of the beneficial nonlinearities by enhancing their
dissipation properties while neutralizing the locally de-
stabilizing fields. This yields a controller which re-
quires less authority to achieve stabilization or trajec-
tory tracking. Secondly, the flat outputs are fundamen-
tal system outputs which are devoid of internal dynam-
ics and correspond to the linear controllability proper-
ties of the system. Hence, indirectly forcing these out-
puts to track pre-specified trajectories does not, per se,
yield any internal stability problems. The prescribed
passive outputs trajectories already contemplates that
the corresponding angular position be forced to adopt
a final constant value with corresponding zero angular
velocity.

3 Simulation Results

We consider a PM stepper motor with the following pa-
rameters

R=840L=0010H, K,=005V-s/rad

J=36x%10"*N—m-—s’/rad
B=1x10"*N-m-s/rad, N,=50 R, =0.050

It is desired to transfer the angular position 8 from the
initial value of §' [rad], towards the final value " [rad],
following a trajectory specified by means of an interpo-
lating time polynomial of the form 9(t, ¢y, ¢;) satisfying

'p(tD)tOrtf) = 07 ¢(tf1t01tf) =1

Thus,
8*(t) = 8" +(t, to, ) [5’ _3‘]

The flat output variable, p, was also made to follow a
similar time trajectory p*(t), taking this coordinate from
the value p(to) = 7', towards the final value p(t;) =
7*, during the same time interval, [to,ty], used for the
angular position change. In other words, we specified

p*(t) as
po(t) =T +9(t, to, tg) (P - 7")

The initial and final values for the motor shaft angular

position were taken to be § = 0 rad and 3" = 0.02 rad.
The proposed angular position transfer makes the phase

angle ¢ take the initial and final values § = n[2 =
1.5707 rad and ¢, = 7/2 — N,§° = 0.5707 rad. This

planning avoids the condition sin ¢ = 0, which is equiv-
alent to i, =0, as it is required in order to avoid a sin-
gularity in the passivity based controller (2.10), (2.11).

The nominal initial value of 6, chosen as F3 (tg) = §' =0
implies, according to (2.2), that iy(to) = ;: =0 with i,
being arbitrary. We choose, just for convenience, the
initial phase A current to be strictly positive (t’: =04
A). The planned trajectory for Fy'(t) = p*(t) must also
evade the condition i,(t) = 0, at any time ¢ € [to, 7).
We choose the following initial value, B! for p*(t),

Fi(to)=7 =i, =044, 3 =0

The final value 5* of p can be deduced from the following
equilibrium relations

tan (NT') =/%a 5 7 =2+ @)

which yield
7 =_i: sec (N,?z)

Choosing 7. = 3.0587 A, the final value of T (t) at time
t; is found to be, Fy(t;) = p* = 5.6547 A, and the
singularity condition is thus avoided. The initial and
terminal times for the equilibrium transfer were set to
be ty = 0.02 s and ¢y = 0.04 s.

The controller design constants Rg, Ry and «, were set
to be
Rp =02, Ry =10, 4=0.05

Figure 1 shows the simulations of the ideal closed loop
performance of the stepping motor mechanical and elec-
trical variables, in the a — b coordinates, commanded by
the designed passivity based controller with passive out-
puts reference trajectories planned in terms of the flat
outputs. Figure 2 shows the performance of the pas-
sivity plus flatness based controller in the presence of
constant, but unknown, load torque perturbations oc-
curring at time ¢ = 0.01 {s]. As it can be seen the de-
signed controller fails to stabilize the highly oscillatory
perturbed response of the system. A simple modifica-
tion of the proposed controller allows the use of an outer
loop classical PID controller to account for unmodeled
load torque pertubations. The results are shown in Fig-
ure 3.

4 Conclusions

In this article, we have proposed a combination of “pas-
sivity and flatness” for the feedback regulation of a (non-
trivial) nonlinear multi-variable system constituted by
the PM stepper motor. As a result, a dynamic feedback



controller which requires less control effort, or authority,
is obtained as compared, for instance, with a feedback
linearizing controller. The controlled system comfort-
ably tracks these trajectories, thanks to their intimate
relation with the hidden linear controllability properties
of the system. The control scheme can be easily mod-
ified to include a traditional outer loop PID controller
which effectively accounts for the unmodeled presence
of constant, but unknown, load torque perturbations.
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Figure 1: PM Stepper motor ideal closed loop response to
Passivity + Flatness based controller (a-b coor-
dinates)
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Figure 2: Closed loop response to unmodeled load torque

perturbation
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Figure 3: PM Stepper motor closed loop response to Pas-
sivity + Flatness based controller with outer
loop PID compensation of load torque pertur-
bation at t=0.01 [s]



