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Abstract

A passivity based controller is proposed for the reg-
ulation of the PPR mobile robot equipped with an
underactuated arm coupled to the main robot body
by means of a flexible joint. The system, which
happens to be differentially flat, can then be con-
trolled using a combination of the passivity based
approach and trajectory planning facilitated by the
flatness property of the system.

1 Introduction

Passivity—-based control (PBC) is a well established
controller design methodology [4] that has shown
to be very useful in solving, with a clear physical
interpretation, control problems of a large class of
nonlinear (physical) systems. Its main character-
istic lies in the fact that for feedback purposes, it
considers (passive) outputs that are “easy to con-
trol”, leading to simple controller structures that
in many cases resemble those currently used in in-
dustrial applications. In addition and from several
perspectives (e.g. parameter uncertainty, unmod-
eled dynamics, etc.), the robustness properties of
the proposed controllers have been proven not only
in a theoretical context but by means of experimen-
tal evaluation.

One interesting feature of PBC is related with the
systematic procedure that must be followed in de-
veloping a controller. In this sense, however, it
must be pointed out that perhaps the main disad-
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vantage of the approach, comes from the require-
ment to carry out some kind of system inversion at
some of step of the design. This situation, on the
one hand, has leading to a more deep knowledge
about the applicability limitations of the method,
but on the other hand, has motivated the idea of
finding new simpler alternatives to solve this prob-
lem. In fact, roughly speaking, three general solu-
tions can be currently identified: The application of
well known inversion algorithms like the proposed
in [9], the use of coordinate transformations in or-
der to simplify the system structure [6] and the ex-
ploitation of the knowledge that the designer could
have about the system behavior [8].

On the other hand, in the last decade the con-
cept of differential flatness of dynamical systems
has been introduced in- a control context [1], [2].
In particular, it is said that a finite dimensional
nonlinear multivariable system is differentially flat
if it is equivalent, by means of endogenous feed-
back, to a linear controllable system in decoupled
Brunovsky’s form. The importance of this con-
cept comes from the fact that for systems satis-
fying this property, there exist a set of variables,
called flat outputs, which completely parameter-
ize the system state variables and control inputs.
Hence, given some (off-line) planned trajectories for
the flat outputs, it is possible to find a (dynamic)
control law that achieves the objective of tracking
the prescribed trajectories. In other words, for sit-
uations when the objective is to control the flat
outputs of a flat system, it is possible to carry out
a system inversion in order to solve the problem.

The flatness approach has shown to be applica-
ble to a large class of physical systems that satisfy



the aforementioned property. Indeed, some prob-
lems that were not possible to solve with other ap-
proaches have been by the application of this tech-
nique. However, the main disadvantages of the pro-
posed controllers are related with its complexity
and its robustness properties.

The objective of this paper is twofold: First,
to evaluate by means of a particular example
(a Prismatic-Prismatic-Revolute (PPR) mobile ro-
bot), the possibility of combining the PBC with
the flatness approach. Here, the aim is to solve the
system inversion requirement of the former by the
exploitation of the flatness property of the robot.
Second, to compare, by means of simulations, the
performances of the passivity + trajectory plan-
ning controller with that based solely on flatness
considerations.

Specifically, a nonlinear multivariable passivity
based controller is proposed for the trajectory
tracking error regulation of the PPR mobile robot
equipped with an underactuated arm which is cou-
pled to the main robot body by means of a flexible
joint. The PPR robotic system has been shown
to be differentially flat in [3] and equivalent, by
means of dynamic feedback, to a set of decoupled
controllable linear systems. The flatness property
is here exploited in the off-line computation of suit-
able trajectories for the passive outputs which are
now expressed in terms of desired trajectories for
the system’s flat outputs. The passive outputs tra-
jectories are required in the expressions of a pas-
sivity based controller developed in [7].

The paper is organized as follows: In section 2 the
mathematical model of the PPR mobile robot is
presented and its passivity properties are quickly
revised. The PBC for this system is developed in
section 3 while in section 4 the flatness properties of
the robots are presented. Section 5 contains the re-
sults obtained from the evaluation of the proposed
controller via digital simulations and the papers
ends with some concluding remarks presented in
section 6.

2 Mathematical model

In this section, by means of the Euler-Lagrange
equations, it is developed the model of the PPR
mobile robot with a flexible revolute joint shown
in Figure 1!. The variables x and y denote the co-

I'This robot has been recently treated by Reyhanoglu et
al [5] from a viewpoint of non-integrable acceleration con-
straints.

ordinates of the tip of the end-effector appendage.
The base body can freely translate in the plane and
the position of its center of mass is represented by
a pair of coordinates (zg,yp). The control input
forces are supposed to be applied at this point of
the body and cause its translational motions. The
control input torque, T, rotates the base body and
provides the angular orientation of the robot main
body, denoted by the angle 6.

By defining 8; = 8 + ¢ and noting that

z=xp+lcos(fy) = & =ip—l0ysin(fy)
y=yp + lsin(f;) ¥ = Up + 105 cos(6,)
(2.1)
the generalized coordinates of the system are given
by q = [z8,¥B, 0,027, while the kinetic co-energy
function can be written as 7(g,4) = 34¢¥ D(g)d,
with

(M + m)Iz O2x1 f(€2)
D(q) = O1x2 I 0
fT(02) 0 m12

=DT(q) >

I, the 2 x 2 identity matrix and f(6;) =
[—=mlsin(6;), mi cos(8;)]". On the other hand, as-
suming that the spring between § and 6, is linear
(with K being the torsional spring coefficient), the
potential energy is given by V(g) = 3¢7Kq with

00 0 0
oo o 0
’C_OOK—K

0 0 -K K

Thus the Lagrangian is given by £(g,¢) =
34T D(q)¢ — 3qTKq while the vector of generalized
external forces is Q = [F1, F2, T, 0)7.

Applying the Euler-Lagrange equations, the model
for the robot is

D(@)§+Clg,4)¢+Kg=Q (2.2)
where

02x2 Ole j(92)
C(q,é): 01 x2 0 0
le2 0 0

Notice that, as is well-known, matrix D(g,¢) =
D(q) — 2C(q,q) is skew-symmetric and the map

(A AT ]T — [is yp 6 ]Tis passive.
3 PBC of the PPR mobil robot

Considering the model presented in the last section
and following [7], in this section a PBC is developed



to achieve the objective of trajectory tracking of the
robot coordinates. To this end, consider the vari-
ables defined as s = ¢—¢& and £ = ¢g—A(g—gq) with
A = AT > 0. We will, specifically, chose A as a di-
agonal matrix given by diag{As, Ay. g, Ao, }. Here
4d = |zBd) YBd, B4, sz]T is the vector of desired be-
havior for the robot coordinates while e = ¢ — gq
is the tracking error. Notice that this error and
the variable s are related by the following linear
dinamical equation é = —Ae+s.

With these definitions, model (2.2) can be equiva-
lently written as

D()é + Cla, d)s = Q — { D(@)é +Cla,d)¢ + Ka}

(3.1)
Define the modified energy function as Hq =
1sTD(q)s. Then along the trajectories of (3.1) we
have.

41, — 7 [Q - {Dt@) + Cla ) +Kd)]

Thus if the controller is proposed as
Q={DW@)é +Clo, )¢+ Ka} —Kus  (32)

with K, = diag{Kyz, Kuy, Kve,0} > 0 then Hy =
—sTK,s < 0. Hence, invoking standar arguments
it can be concluded that both s and e tend to zero
as time tends to infinity.

The explicit expression for the components of the
passivity based controller (3.2) are written here, for
the purpose of later reference

Fy = (M +m)(¥pd — Az(2B — £84d))
—mlsin(82)(62d — s, (62 —624))
—mlf; cos(62) (624 — Ae, (02 — 024))
—Kyz(2B — Ae(zB — zBd))
Fy = (M +m)(jsa — A=(y8 — ¥Bd)) (3.3)
+ml cos(82)(02¢ — Ao, (02 — b24)) '
—mlfs sin(02)(02d - /\92 (02 - egd))
_I“{uy(yB - /\y(yB - de))
T = (64— (6 — 0a)) + K (6= 62)
—K.0(0 — 2o (6 — 04))

where must be noticed that this controller re-
quires the specification of the desired trajectories,
za(t), ya(t), 8a(t), O24(t), of the adopted general-
ized coordinates.

The main point to be noticed in the development
above, is the fact that, due to the structure of the

generalized external forces vector, the last equation
in (3.2), given by

—mlsin(62)(Zp4 — Az(ZB — £Bd))
+micos(02)(ia — Ay(y5 — YBa))
+m12(02d — Ao, (02 — 024))
+K(6—0;) =0

establishes a constraint that must be satisfied for
all time. In this sense, the desired behavior for
the robot coordinates g4, must be chosen such that
this constraint is satisfied. Indeed, this requirement
states the critical step in the design of the PBC
and leads to the necessity of inverting the system,
as mentioned in the introcution of the paper. As
was also mentioned, the solution to this problem
will be given (in the next section) by considering
the flatness properties of the system. However and
with the aim of simplifying this task, it is useful to
notice that since ¢ — gq, the constraint takes the
following form

—mlsin(624)Zpa + ml cos(b24)iB4 + mi2Gqg
+K (84— 624) =0

(3.4)
which corresponds identically to the last system
equation under ideal reference trajectory tracking
conditions. Thus, the only condition that must be
imposed to the desired variables ¢g4, is that they
must satisfy the natural dynamic behavior of the
system.

4 Flatness Control

With the aim of solving the system inversion prob-
lem posed in the last section, in this section it is
presented the flatness property of the PPR robot
recently reported in {3]. The purpose of this pre-
sentation is to show how the exploitation of this
property allow us to obtain the desired behavior
g4, required by the PBC, that satisfy the constraint
(3.4).

The PPR robot model (2.2) is easily seen to be dif-
ferentially flat. Indeed, the flat outputs are given
by the main body center of gravity position coordi-
nates, zg,ys, and the orientation angle, 82, of the
robot arm. Hence, all variables in the system (i.e.
states and control inputs) are expressible as differ-
ential functions of the flat coordinates, (z5, yB, 62)-

. mi?§,—mlii p sin(02)+mlijp cos(62)
=0, + [ L

Fy = (M +m)ip —mlsin(6;)8, — mlb3 cos(2)
(4.1)



Fy = (M 4+ m)ijg + mi cos(6 )6, — ml63 sin(6z)
T = —mlipsin(f2) + mlijp cos(6,)
+(1 + mi2)dy + mL ")
+zU v — 624 — bGrip — 26,283 cos(0,)
m

—2l (28 _ 6225 4 Ga4ip + 26208 ) sin(62)

In the context of this paper, the importance of
the differential parameterization (4.1), specially the
first equation, lies in the fact that it allows one to
explicitly compute a suitable reference trajectory
for all state variables in the system. In particu-
lar, the required body angular orientation, 84(t),
can be directly expressed in terms of the desired
off-line planned trajectories for the body position
coordinates, (zgq(t), ypa(t)), and the desired arm
angular position trajectory, 624(t), in the following
way

—mlsin(02q)Ep4+ml cos(824)ijpa+mi*b2q
K

(4.2)
giving as a result that all the information required
for the PBC is now at disposition. Notice that the
end effector position is also expressible in terms of
the flat outputs, by means of (2.1).

The differential parameterization (4.1) allows one
to explicitly off-line compute suitable reference tra-
jectories for all state variables in the system in
terms of desired flat output reference trajectories.

The structure of the dependence of the control in-
puts on the flat outputs time derivatives reveals
that while the torque control input T" depends up to
fourth order time derivatives of all the flat outputs,
the forces Fy and F, at most involve second order
time derivatives of only two flat outputs. The mul-
tivariable input-flat output relation is, therefore,
not an invertible one in the sense that the higher
order derivatives of the flat outputs are not in a
one to one relationship with a possible set of in-
dependent control inputs. A dynamic eztension is,
therefore, needed on the first two control inputs in
order to achieve a desirable input-flat output “de-
coupling”. This extended relation is

04 =024 +

EBr=(m+ M) —ml [eg‘” - 6(92)252] sin(62)

—ml [4920§3> +3(62)? - (92)4] cos(62)
(4.3)

By =(m+ M)y —mi [4(9299 +3(6,)2
_(92)4J sin(f,) +ml [054) —6(92)2(52] cos(fz)
T = (I + mi?)f, + B | 165"

- (xg;” ¥ [# - ég] ip + baijp + zégyg") sin(6s)

+ (yﬁé” + [% - ég} iip — baiip — 292x§§’) cos(eQ)]

which is globally invertible with respect flat out-
puts, implying that a suitable (global) state-
dependent input coordinate transformation reduces
the system to the following decoupled set of linear
controllable systems in Brunovsky’s canonical form
:cg) =, yg) = vy, 6’§4) = v3 with v;, v2 and v3
defined in the obvious way.

In the proposition below, the above invertibility
property of the system is exploited with the aim of
desinging a feedback linearization controller, which
will be used to achieve the second objective of this
work, i.e. the comparison between PBC and flat-
ness control.

Proposition 4.1 Given a prescribed trajectory,
{z5(t), y5(t), 03(t)} for the flat outputs of the PPR
robot (2.2), the dynamic feedback controller ob-

tained from (4.3) by substituting zg) = vy, yg) =
Uy, 954) = wvp,, achieves closed loop asymptotic

ezponential tracking of the given path with vz =
d ' _ d d d —
P=(G)ex = gazn, vy = Py(F)ey — gmys and ve, =
o, (&)eo, — $xb2. The variables ez, ey and eq, de-
note, respectively, the tracking errors, zp — x5 (t),
* . 4
yp — y5(t) and 6y — 82°(t) while py(&) = = +
3 2
ﬁg(A)%3-+ﬂ2(.)adp+ﬂ1(.)£—+,@g(.) where the real con-

stant coefficients {Bo(.), B1(.), Ba(-yr Ba()} constitute
a Hurwitz set, i.e. they are associated with stable,

monic, fourth order polynomials.

Proof. The proposed controller yields the follow-
ing closed loop tracking error dynamics

:(Zd‘) ez
py(g)|ev | =0

(m+ M), f(62) {
[pﬂz(ai) €6,

T(62) mi?

Since the above matrix is non-singular, it follows
that e;, e, and eg, asymptotically exponentially
converge to zero. O



The linearizing controller derived above is based
on exact cancellation of the systems non-linearities.
The performance of the linearizing controller is se-
riously deteriorated when unmodelled external per-
turbation inputs and uncertain parameter pertur-
bations affect the system.

5 Simulation results
Simulations were performed for the derived PPR
mobile robot model controlled by the passivity
based controller (3.3). The desired trajectories,
ga(t), for the chosen generalized coordinate vari-
ables, ¢ = [z5,yp, ,02]7, which are needed in the
static controller expressions (3.3), were specified in
terms ‘of the desired trajectories for the flat out-
puts, 54(t), ysa(t), 624(t). These trajectories de-
termine the required trajectory for the body ori-
entation #,4(t) in accordance with the differential
parameterization (4.2).
Consider the motion represented by a straight line
segment with prescribed initial point given by the
coordinates, (o, yo), and terminal point given by,
(zf,yy). The robot starts with zero velocity and is
required to reach the end of the line segment and
proceed to park at the specified final point. The
arm is required to point along the same direction
of the robot movement.
For the required maneuver, we prescribe a polyno-
mial spline for each of the flat output coordinates
zp4(t), ypa(t) and also prescribe a constant value
trajectory for the angular position 6,4(t) which im-
poses a zero value for the arms angular deviation,
¢(t) =62 — 6.
The nominal displacement variables are specified
as,

zpalt) =20 + (27— 20)g(t) | ooy 9771 (8)

ysalt) = yo + (yy — %)g° (1) [5_, ¢~ (8)
024(t) = 0.78539 (= %)
o) = (&%

with ;= 252, r, = 1050, r3 = 1800, r4 = 1575,
rs = 700, r¢ = 126 and t; = 10 [s], ¢y = 30 [s],
(x7,97) = (15,15, (20, %0) = (0.5,0.5).

Figure 2 depicts computer simulations illustrat-
ing the performance of the previously designed
feedback controller for significant initial deviations
from the prescribed path and from the prescribed
orientation angle. These initial conditions were set
to be z(to) = 0.4[m], y(to) = 0.4[m], 6, = 0.6[rad)

and 6 = 0.6[rad].

As can be seen in this figure, although the tracking
objective is achieved, coordinate 6, shows a very
poor performance. This behavior must be expected
since, due to the structure of the system, it is not
possible to inyect damping to this coordinate (no-
tice the zero entry in matrix K, in the equation of
the controller (3.2)). This problem has been a topic
of research that has deserved a great attention and
current research is developed with the aim to solve
this problem in this new context.

On the other hand, the relatively simple structure
of the proposed controller is reflected in the fact
that the control effort is also relatively small, as
can be seen in figure 3.

In order to carry out a comparision between the
PBC and the flatness controller, the same control
objective than in the previous section imposed to
the former was imposed to the flatness controller
presented in Proposition 1. In this case, in addition
to the nominal displacement variables, the nomi-
nal displacement for the coordinate § was defined
as §*(t) = 0.78539. Figures 4 depicts the results
obtained under the conditions above for the robot
coordinates and the control inputs, respectively. As
can be seen, the disadvantage that comes from the
more complex structure of the flatness controller
with respect PBC, is compensated by a consider-
ably better performance in coordinate 6,. However,
it must be noticed that the control effort required
under the flatness approach is almost twice of the
required under the passivity approach.

6 Concluding remarks

A solution to the system inversion requirement in
passivity—based control design was proposed in this
paper. The particular example of the Prismatic—-
Prismatic-Revolute mobile robot with flexible link
was approached. The inversion was carried out
by exploiting the flatness properties of the sys-
tem, task that was simplified by the fact that in
this case the flat outputs coincide with the sys-
tem variables to be controlled. The effectiveness
of the proposed controller was evaluated via dig-
ital simulations where the lack of damping inyec-
tion on the underactuated coordinates was evident.
The analysis of the presented solution was com-
plemented by comparing it with a controller pro-
duced by considering a purely flatness approach.
Although a clear superiority was obtained with the
flatness controller regarding the transient response



of the underactuated coordinates, the passivity-
based control law showed some advantanges con-
cerning computational requirements and control ef-
fort. It is the authors believe that this approach
of combining passivity and flatness design method-
ologies, could lead to more systematic procedures
for designing a controller. Nevertheless, current re-
search is developing in evaluating important topics
like robustness and performance improvement.
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Figure 2: State variable responses for PBC
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Figure 4: State variable and control inputs under flat-
ness control



