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Abstract— We propose in this work an adaptive passiva-
tion procedure for affine nonlinear systems with constant
but unknown parameters, which is achievable through an
adaptive state-dependent input coordinate transformation.
The unknown parameters are assumed to enter linearly into
the drift vector fields of the dynamic equations defining the
nonlinear system. It is shown that the update law designed
for the unknown parameters qualifies as a “force which does
not work” in the context of a general passivity canonical
form for nonlinear systems. The design of passivity-based
controllers, via energy shaping and damping injection, is ad-
dressed and an application of this approach for the adaptive
stabilization of a gravity-tank/pipe systemn is also consid-
ered.
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I. INTRODUCTION

HE study of passive nonlinear systems and their prop-

erties have received much attention in recent years.
Passive systems with nonnegative storage functions exhibit
attractive stability properties. For instance, if a passive
system satisfies a certain detectability condition, it is stabi-
lizable by a simple static output feedback control law [1]
Passivity is a particular case of the more general concept of
dissipativity, which was introduced by Willems in [10]. Ba-
sic and important contributions to this field, in the context
of affine nonlinear systems, have been given in the work by
Hill and Moylan [2], and Byrnes et al 1.

On the other hand, adaptive stabilization of nonlinear
systems containing constant but unknown parameters has
attracted attention of many researchers recently (see [5] [6],
[7]). A common assumption in the context of adaptive con-
trol is associated with linear parameterization of uncertain
systems which simplifies the problem of designing adaptive
feedback control laws. We propose here a systematic pro-
cedure to obtain an adaptive state dependent input coordi-
nate transformation which renders passive a class of nonlin-
ear systems containing constant but unknown parameters.
This adaptive feedback passivation procedure constitutes a
generalization of the geometric approach proposed by Sira-
Ramirez and Delgado [9], due to the incorporation of online
update laws. It is shown that the parameter adaptation
laws are “forces” which do not perform any work with re-
spect to an augmented storage function including energy
terms associated with the parameter estimation errors. An
alternative general treatment of adaptive feedback passi-
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vation of uncertain nonlinear systems has been presented
in the work of Seron et al [8]. Our approach differs from
that one in that we do not impose any requirement regard-
ing the relative degree of the system output and, moreover,
an essential singularity is removed, by assuming constant
nonzero equilibrium points where the storage function has
nonzero gradient projection along the input vector field,
which allows for direct passivation through an input coor-
dinate transformation.

Once the uncertain system has been made passive,
we proceed to decompose the drift vector field of it,
by straightforward factorization, in dissipative forces and
workless forces. Then, a passivity-based feedback control
law which achieves asymptotic stability of the closed loop
system is synthesized by considering a modified storage
function plus damping injection which preserves benefitial
self-stabilizing nonlinearities.

This paper is organized as follows: Section II presents
some basic definitions about passivity and revisits the fun-
damental ideas of the feedback passivation scheme pro-
posed in [9] for single-input single-output (SISO) systems.
Qur adaptive feedback passivation scheme is described in
Section III. An illustrative example is presented in Section
IV. Section V contains some conclusions.

I1. PAssivaTiON OF SISO NONLINEAR SYSTEMS
A. Basic Definitions
Consider the single input single output system,

f(z) +9(z)u (1)
h(z)

r =
y =

where = € x C R" is the state vector, v € U C R is
the control input and the scalar function y € Y C R is
the output function of the system. The vector fields f(z)
and g(z) are assumed to be smooth on x. For simplicity,
we assume the existence of an isolated nonzero equilibrium
state, £ = z, € ), where f(z¢) + g(z.)u = 0, for some
nonzero constant T. The region x C R" is the operating
region of the system which strictly contains z.. All our
results are local for as long as x cannot be assumed to be
all of R™. Associated with system (1) it is assumed to exist
an energy storage function, V : x = R+ which may be zero
outside of x (at the origin, for instance). The supply rate
function is defined as a function s: U x Y = R.

We introduce some well-known basic definitions about
dissipative, lossless and passive systems (see Byrnes et al
[1] for further details).

Definition 1: System (1) is said to be dissipative with
respect to the supply rate s(u,y) if there exists a storage



function V : x = R, such that for all 25 € x and for all
t; > to, and all input functions u, the following relation
holds

oty
V(a(t)) - V((ta)) < / st o)t (2)

to

with z(tg) = 2¢ and z(¢,) is the state resulting, at time ¢;,
from the solution of system (1) taking as initial condition
xo and as control input the function u(t). Inequality (2) is

equivalent. to )
V < su(t),y(t)) ()

The system is lossless if the inequalities (2), or (3), are, in
fact, equalities.

Definition 2: System (1) is passive if it is dissipative with
respect to the supply rate s(u,y) = uy. The system is
strictly input passive if there exists § > 0 such that the
system is dissipative with respect to s{u,y) = uy — du’.
The system is strictly output passive if there exists p > 0
such that the system is dissipative with respect to s(u,y) =
uy — py?.

We shall be considering means of rendering a system
of the form (1) passive by means of state feedback. We
therefore give a definition of “passivifiable” systen in the
following terms.

Definition 3: System (1) is said to be passivifiable with
respect to the storage function V, if there exists a regular
affine feedback law of the form

u=qa(z)+ Bz)v ; a(z),B(z) eR (4)

where 8(z) is a nonzero scalar function in x, and such that
the closed loop system (1)-(4) becomes passive with the
new scalar control input v.

B. Feedback Passtvation

Consider system (1) with V being, locally in x, a strict
relative degree one function, i.e. L,V (r) # 0, Vz € x.
Then, for any given control input « and any initial state
9 € X, the time derivative of the storage function V', along
the solutions of (1), is given by

'/'—@:f( )+( 4

with LyV(z) and L,V (z) being the Lie derivatives of the
storage function V() along the vector fields f(z) and g(z)
respectively.

Suppose that the vector field f(z) has natural compo-

nents, fa(z), fna(z), f1(zx), with respect to the storage func-

r)) w=L;V(z)+[L,V(z)]w (5)

tion V, i.e
f@) = fa(x) + foa + f1(z) (6)
such that,
LpV(z) <0 ; Vzex
is, either sign — undefined in x
L; Vi(z
or, else, it is nonnegative in x

L;V(x) 0 ; Vzeyx

We address f4(z) as the dissipative component of f(z).
Similarly, f.q(z) will be termed the non-dissipative com-
ponent of f(z) and, fr(z) is the invariant component of
f(=).

The time derivative of the energy storage function, along
the solutions of the system, is given by

V=L V(2)+ Ly, V(@) + LV (@) (")

Define the following state dependent input coordinate

transformation,

u=

ﬁ h(z)v — Ly, ,V(z) —éhz(:c)] ®)

where ¢ is a strictly positive scalar.

It is seen, upon substitution of expression (8) into equa-
tion (7), that the time derivative of the energy storage func-
tion satisfies the following string of relations,

V=L, V() +h(z)v—06R%z) Syv =y  <yv  (9)

In other words, if the system is such that L,V is locally
nonzero, then the input coordinate of the system may be
transformed in such a way that the partially closed loop
system will exhibit a strictly output passive behaviour be-
tween the external control input v and the original scalar
output y = h(z). This result is summarized in the follow-
ing proposition.

Proposition 1: System (1) is locally strictly output pas-
sivifiable with respect to the storage function V| by means
of affine feedback of the form (4) if and only if

LV(z)#0 Vzey (10)
The affine feedback law, or state dependent input coordi-
nate transformation, that achieves strict output passivation
is given by the expression (8).

C. Feedback Control Design from a Passivity Canonical
Form

We revisit in this section a systematic procedure for the
synthesis of passivity based feedback controllers. This pro-
cedure, based on storage function modification and damp-
ing injection through feedback, has been extensively used
in the area of electro-mechanical systems.

Suppose that system (1) is passivifiable and assume
fa(z), faa(z), fr{z) are the natural components of f(z)
with respect to the storage function V(z). Assuming that
LyV(x) # 0 in the operating region x of the state space,
then, the passivified system can be written as

b = fula)+ i)+ 1 —g(x)%%] fuala)
) R(a)
R s yye@)



As integrating parts of the time derivative of V one has
the following terms
dh?(z)
AV o —
(x) [fm) WD) <0

0

AV (x) {fi(r) [ 9(z) - 37(( )} fnal T)}

It then follows, by straightforward factorization, that such
a system may always be rewritten in the following form

io= —R@)(AV(@) = T(@)(AV (@) + M(z)w
y = h(z) (12)
with R(z) being a positive semidefinite matrix in x, and

J(z) being a skew-symmetric matrix. This implies the
following identifications,

I ()

il = 155 g(e) = —RE)AV()T
f,<r)+[r—qr>“~f’)}fnd<) = —J@OV()"
Fylsee) = M)

This factorization is particularly simple when the storage
function is quadratic, i.e. V(z) =1/227z, as will be con-
sidered in the rest, of this work. The expression (12) char-
acterizes a passivity canonical form for which a feedback
controller may be designed via energy shaping and damp-
ing injection, as illustrated below.

A passivity-based controller can be proposed for systems
of the form (12} by considering the following storage func-
tion
(13)

Via(z,zq) = %(a: —xd)T(:c —z4)

where z4 is an auxiliary state vector to be defined later.
Along the solutions of system (12), the function Va(z,z4)
exhibits the following time derivative

Va(z, z4) = (z—za)T[-R(z)z—T (z)z+M (z)v—z4] (14)

Completing squares in the right hand side and adding a
damping injection term of the form —Rgy;(x)z, so that
Rm{zr) = R(z) + Rai(z) is a positive definite matrix for
all = € x, one obtains

Va(r,24) = (2 =24)" |~ (R(@) + Ras(2)) (@ — 2a)
—J(z)(x = x4) —tq —R(z)zq — T (T)24
+Rd,(x)(:r—zd)+.M(z)v] (15)

Note that, if we let the auxiliary vector z,(t) satisfies the
following system of differential equations

iqg =—R(z)zg— T (2)xa + Rai(z)(x — 34) + M(2)v
the time derivative of Vy(z, z4) yields
—(z = 2a) TR () (7 —24)

—%(x —z2)7 (z — z4)

(16)

Va(z,24) =

IN

IN

—%V(m,zd) <0

where, in terms of the minimum and maximum eigenvalues
(Anins Amaz) of Rnu(z), a and b are given by,

a= i"fzex )\min(Rm(q;)) >0

b =supzex Amaz(Rm(z)) >0

It follows that the vector z(t) asymptotically converges to-
wards the auxiliary vector trajectory x4(t). The feedback
controller can be synthesized from the system of differential
equations (16). Typically, one sets for a particular compo-
nent of the vector z4 a desired constant equilibrium value.
The objective of such a particularization is to obtain a feed-
back expression for the external control input v in terms
of both the available state vector = and the rest of auxil-
fary variables in z4. The differential equations defining the
remaining auxiliary variables in z4 are to be regarded as
[“s]tate” components of a dynamical feedback compensator
9].

III. ADAPTIVE FEEDBACK PASSIVATION

We consider in this section an adaptive approach of the
passivation procedure described above, for a class of SISO
uncertain nonlinear systems.

Consider a SISO nonlinear system with linearly param-
eterized uncertainty in the form

(17)

8.
Il

p
F@)+ )" filx)b: + g(x)u
i=1
y = h(z)
where 2 € x C R" is the state; u,y the scalar input
and output respectively; and 6;, ¢ = 1,,..,p is a set
of constant unknown parameters. The drift. vector fields
f(z), filz),..., fo{z), and the “input” vector field g(z)
are smooth n-dimensional vector fields.
System (17) may always be rewritten as follows

f(z) + 2(2)6 + g(z)u
h(z)

where the matrix ®(z) € R"*? and the vector 8 of unknown
parameters are defined as follows

&(z) =[fi(),..., fo(z)]

By incorporating a parameter estimate vector 8 of the con-
stant unknown parameters, (18) may be rewritten as fol-
lows

(18)

6=[0....6)7 (19)

f(@) + ()6 + g(z)u + &(z)(6 — )
h(z)

(20)

T

Y

We will initially consider the known nominal part of system
(20)

f(z)+ d’(z)l’; +g(z)u
h(z)

(21)

Il



and a quadratic Lyapunov function V(z) = 1/2¢Tz. By
decomposing the vector field f(z) and, in addition, assum-
ing that the vector field ®(x)f is non-dissipative with re-
spect to V(z), we can rewrite (21) in the way

fa(@) + f1(z) + fra(z,8) +9(z)u  (22)

h(z)

z
y =

with f,ld(m, é) = fna() +<I>(:n)ﬁ. Thus, the time derivative
of V(z) can be written
V(z) =L, V(z)+ L; V(z,0)+ L,V (z)u (23)
By using the following state-dependent input coordinate
transformation,
1

= ——

/ 3) — 2
V@ hayp =Ly V(z,0) —6h*(z)

(24)

where ¢ is a positive scalar and v is an auxiliary control
input, V(z,8) satisfies the following string of relations,

V =L, Vix) +hiz)v—h2(z) Syo—6y> Syv (25)
and the partially closed loop system yields
. AV(z)] p
b = fula)+ 1)+ 1= o) | Fate)
hz)v h2(z)
z)— 26
+L_qV(z)g(T) Lgv(z)g(r) (26)
The time derivative of V has the following terms
Jh%(x)
/ - <
AV(I) 2 o
/ - . _
sv@ {51 + [1 =90 LB )} = 0

with AV(z) = %::‘ Then, by straightforward factoriza-
tion, this system may always be rewritten in the following

adaptive passivity canonical form

—RENAV ()T = T(z,0)(AV (2))T + M(z)v
h(z) (27)

,7.: =
y =
with R(z) being a positive semidefinite matrix in x, and

J(z,8) being a skew-symmetric matrix. This implies the
following identifications,

By considering the modified storage function

Va(z,z4) = %(z - zd)T(z —z4) (29)

with 24 an auxiliary state vector to be defined, and follow-
ing the energy shaping and damping injection procedure
described in Section II-C, we obtain the dynamical com-
pensator

ta =—R(2)Ta— T (2,0)Ta +Rai(z)(z—z4)+ M(z)v (30)

which achieves that the time derivative of Vy(z, z4) satisfies

Va(z,24) = —(z=22) Rum(z)(z — 24)
< —%(I —z)T(x —zq)
< —FV(@z) <0

However, the design of the adaptive controller has not been
completed yet, because the actual system (20) contains an
estimate error term and, consequently, the passivity canon-
ical form, resulting of applying the procedure above, is

i = —R@)z—J(0z+ M)+ $(z)6 —6)
= h(r) (31)

Thus, Vd(z,xd) has an additional term
Vi(z,24) = —(2=24) " Ron(z) (x —20) +(z—24)T & (z) (0 -6)

Therefore, we must find an update law for the unknown
parameters and eliminate the destabilizing effect of the es-
timate error in V;. To this end, we extend the storage
function as follows

W(z, 74,0) = Va(, 74) + %(9 —OTr'(6—0) (32)

The time derivative of W(z,z4, 6) yields
Wi = —(z—22)"Rm(z)(z —24)
+(6—-6)Tr! [—é +T87 (z)(z — Td)] (33)
Thus, by using the update law
b= 087 () (x — xq) (34)

we eliminate the destabilizing effect of the estimate error

R (z and achieve
fale) =S i ate) = —R@AvE)T M
AV )g Wa(z,20,0) = —(z—24)" Ron(z)(z — 24)
1@+ [1=0@ 0 | fuwd) = =T h(aVE) < Lm0 (s 20 <0
% g(z) M(z) The asymptotic convergence of the state vector z(t) to the
V(=) desired trajectory zq(t) is guaranteed. These results are

When the storage function is quadratic, system (27) can
be rewritten in the following way

i=—R(z)z —J(z,d)z+ M(z)v ; y=h(z) (28)

summarized in the following proposition.

Proposition 2: Consider a nominal SISO nonlinear sys-
tem of the form (21). The system is passivifiable with
respect to a quadratic storage function V(z), through a



state dependent and parameter estimate dependent input
coordinate trasnformation, if and only if the condition
LyVi(z)#0 (35)
in x. The input, coordinate trasnformation that strictly
passivifies the uncertain system (21) is given by

1

V@ Ly, V(@ 0)+h(@)v—oh*(z)] (36)

u(z,§,v) =

where @ is the estimate of the unknown parameter vector
6, obtained from (34). By extending the storage function
as (29) and applying the dynamical control law (30), we
stabilize the system (28) in passivity canonical form. Then,
by considering the estimate error, system (21) adopts the
extended form (20) which can be stabilized by using the
adaptive control law (36) together with the update law
(34), with respect to the extended storage function (32).

IV. PAssIVITY-BASED REGULATION OF A
GRAVITY-FLOW TANK/PIPELINE

Consider the following gravity-flow tank/pipeline taken
from Karjala and Himmelblau (see [3]) which includes an
elementary static model for an “equal percentage valve”

o A q I(/
z; = —prg = ;451%
. 1 _(1—
Ty = —F (cha,a (t—v) _ 1‘1) (37)
t
yo= T2

where z; is the volumetric flow rate of liquid leaving the
tank, x5 is the height of the liquid in the tank, and u is the
valve position (control input), taking values in the closed
interval [0,1]. The system’s parameters are Fomee: maxi-
mum value of the volumetric rate of fluid entering the tank,
9: gravitational acceleration constant, L: length of the
pipe, K;: friction factor, p: density of the liquid, A,: cross
sectional arca of the pipe, A;: cross sectional area of the
tank, and o: rangeability parameter of the valve.

For a constant value U € [0,1] of the control input u,
the system has an equilibrium point given by

X = FCmnrﬂ’_(l_U)

In order to avoid unnecessary complications, we consider
the control input term via the following auxiliary control
input w

(1—u) (38)
We also assume that the friction factor K is constant but
unknown, thus obtaining

w = Fomaz 0

. Ayg z
o= Aot
. 1

Yy = o2

where § = K. The operating region for system (37) is
given by points strictly located in the first quadrant of R2.
From (39), we may identify the following relations

flz) = 9(=) =
— n
1
d(z) =
0

and incorporating the parameter estimate 8, we obtain the
nominal system

. Apg 5 T%

T = I ro 0[),4;

Ty = Ait(w —) (40)
Yy = 22

By considering initially the storage function V(z) =
127z the condition (10) is given by LiV(z) = 2 £ 0.
and the time derivative of V'(z) along the trajectories of
(40), is given by

3
- S 1
V(x) =—:T'%9— Efmm; + %mlm + Ait.mm (41)
This manner, (41) satisfies the following inequality
. T3 5 Ayg 1
Vg < =L gy o8 oL
(.I‘) < pA% + T I112+A112w (42)

which is obtained under the assumption that the system
evolution takes place on the operating region x and, hence,
T; and x5 are strictly positive for all times. This allows one
to decompose the vector field f(z) as follows

0 A0, — 2ab
f(l(fl‘) == fnd(r) =
1
T 0

(43)
Then, using the statc dependent input coordinate trasnfor-
mation

w= [ﬁ;;z ) — AT’:gAtml + A0 —Adz,  §>0 (44)
we obtain the passivity inequality
V(z) < zpv — 622 < yv (45)
Thus, the passivity canonical form yields
& ==R(z)z —J(z,0)z + M(z)v (46)

with

R(z):(g H;%); M(z>=(?)

B i
J(z,8) = 0 R
2O=\ a2 0
T A



A. Controller Design

Considering the modified energy function W(z,zq,6),

W(z,z4,0) = Valz, zd)+ (9 9) 47)

_ %(z _ zd)T(z — 2+ 217(9_ B2

and applying the energy shaping and damping injection
procedure, we obtain the following set of auxiliary differ-
ential equations

. _ Ty 4 Apg
Tid = —MQIM-F—L Tad +R1($1 —Zld) (48)
. Apg Tt I% ;
= - Pr,—-00+-— ——0
L2¥ 7 1= +Azg)x2d+pA§:cg 14

+Rz($2 O .’I:zd) +v

where Ry and R; are the diagonal components of the pos-
itive definite matrix Rq:(z). The update law for the un-
known parameter yields

é_y(pi;)( S

Then, letting zo4 = X2 =constant, one obtains the follow-
ing dynamical controller expression, where x4 has been
substituted by the controller state variable ¢,

(49)

2
rd ) T 4
v T £+ <6+ A,IL‘Q) 2 pAgngé BQ(IQ X2
. 2 A
€ = pAp 9X2+ T X2+R1( 1—6) (50)

which, together with the control input transformation (44),
define the actual control input corresponding to the valve

position
w
log | =— 51
2 (FCYTLGI) ( )

We used the following parameter values for the simu-
lation of the controlled gravity-tank/pipe system: g =
9.81 m/s?; L =914 m; p = 998 Kg/m?; A, = 0.653 m?;
A, =105 m?; a = 10, and Fomez = 2 m®/s. The un-
known parameter was set to be Ky = 441 N — s2/md.
The required equilibrium point for y = x5 was chosen to be
X, =5 m, while that of z; was set to be X; =1.8360m?/s.
This corresponds with a steady state value of the control
input U = 0.9627. The design parameters were chosen to
be Ry = 0.1; Ry = 0.08; v = 20, and 6 = 0.8. Figure 1
shows the closed loop response of the gravity-tank / pipe
system with good stabilization features: no overshoot and
a settling time of less than 200 seconds.

u=1+
log

V. CONCLUSIONS

In this work, we have proposed an adaptive passivity-
based approach for the regulation of a large class of affine
nonlinear systems with constant but unknown parame-
ters. The adaptive passivation was shown to be achiev-
able through a parameter-estimate-dependent control in-
put transformation that renders the partially closed loop
system passive. This is achieved under the condition that
the storage function of the system has a nonzero directional
derivative with respect the input vector field in the oper-
ating region. An illustrative example was used to show the
performance of the proposed approach.
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Fig. 1. Adaptively controlled responses of a gravity-tank/pipe system



