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In this article, a difference flatness approach is used for the rest-to-rest stBiIization,
based on off-line trajectory planning, of an approximately (Euler) discretized model
of a nonlinear, single link, flexible joint manipulator.

1 Introduction

Flexible, joint manipulators have been extensively studied in the past by many
researchers. We refer the reader to the recent book chapter by De Luca !,
for historical and technical details of this area. Most of the contributions
include continuous-time models. Controller design, in these instances, has
been greatly facilitated by the fact that most of treated models are eractly
linearizable and, hence, differentially flat. In spite of being of crucial impor-
tance in the experimental implementation of designed nonlinear controllers,
no articles, within our knowledge, deal with either exact or, approximately,
discretized models of flexible joint manipulators.

Difference flatness for discrete time nonlinear systems is a concept that
directly stems from the concept of differential flatness, introduced, within
the context of continuous nonlinear controlled systems by Prof. Michel Fliess
and his colleages in a series of articles (Fliess et al, Z). Flatness allows for
a complete difference parameterization of all system variables, including the
inputs, in terms of a special set of independent variables, called the flat out-
puts, exhibiting the same cardinality as the set of control inputs, which are
difference functions of the state, i.e. they are functions of the state and of a
finite number of advances of the state.

Section 2 presents the discretized model of a single-link flexible joint ma-
nipulator and demonstrates its flatness. We proceed to specify a desired tra-
jectory for the flat output entitling a rest-to-rest maneuver covering a large
angular displacement, devoid of oscillations. A sliding mode based feedback
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control strategy is then proposed to have the system accurately track the pro-
posed off-line planned trajectory and exhibit a certain degree of robustness
with respect to initial and unmodeled perturbations causing temporary devi-
ations from the nominal trajectory. Section 3 presents the simulation results.
Section 4 is devoted to the conclusions and suggestions for further research in
this field. An appendix collects the basic background results on a new sliding
surface nonlinear dynamics paradigm which guarantees finite time reachabil-
ity of the sliding surface and exhibits robustness with respect to bounded
perturbations.

2 The Flexible Joint Robot

Consider the following Euler-discretization model of a flexible joint robot,
shown in Figure 1,

Tyk+1 = Tae +TZog

gLT K. T
sinTyp — i

To k41 = Tok + (T1,x — Z3,x)

T3kl = T3k + TZok

Tak+1 = Tak + g(iﬁ,k —T3) + %uk (1)

where z, is the link angular position, z; is the link angular velocity, x3 is

the motor axis angular position and x4 is the motor axis angular velocity. The

control input u represents the motor applied torque. The fixed parameter T
is the duration of the sampling interval.

2.1 Difference Flatness of the Flexible joint Manipulator

The system is difference flat, with flat output given by the link angular po-
sition ;. This means, in particular, that all system variables, including the
input u, are expressible as difference functions of z;. The system equations
(1) lead to the following difference parametrization,

T1,k = T1k

_ Tkt —T1x
T2k = #

I (Zyps2 — 2Ty k41 + T2k mgL .
z =T+ — ! - : - sinz
BT T K ( T2 K, =Nk
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’ T K, T3
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K.T 1,k+1 1,k
T -2z +
up = (J +1) ( =S xl,k)

+£ Ty k+d — AT1 043 + 6T k42 — AT g1 + T1k

K, T4
J L . . . .

_ < M9 [ sin Ty kg2 —28INTy kg1 +5inzy x| —mgLsinzy x (2)

Ka 7"2 r 1 i3 »

The last equation immediately suggests the following state-dependent in-
put coordinate transformation:

z -2z +x
ux = (J + 1) ( Lit? T]2,k+1 l'k)
- JI (vr —4%) k43 + 621 k42 — 4T1 kg1 + Tak
K, T4

J mglL .
S UL (sin Ty kt2 — 25inTy xyq + sin :rl,k) — mgLsinzy i (3)

K, T?

where vy represents the new, or transformed, input coordinate. Thus, the
system is seen to be equivalent, after state feedback and an input coordinate
transformation, to the following linear system,

T1,k+4 = Vk (4)

2.2 Off-line Trajectory Planning

Suppose it is desired to bring the link angular position variable z; from an
initial equilibrium value, E'{"““‘, at time ¢t = K, towards a final equilibrium
position, ':E,{mal, at time ¢t = K, along a prescribed path Tk satisfying the
initial and final conditions. We prescribe such a desired trajectory as

z} = ginitial 4 (E{inal _ Eiﬂitial) ok, K1, K2) (5)

with (K1, K1,K2) = 0 and ¢(K2,K;,Ka) = 1.
Specifically, we choose, as an interpolating polynomial, a Bezier polyno-
mial in discrete time. The expression

(k=K \° k —K k—Ki \°
(p(k'pKvi?) - (K2 —KI) [T] ™ <K2 —Kl) + T¢ (Kz —Kl
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ry = 252, o = 1050, r3 = 1800, rqy = 1575, r5 = 700, 16 = 126
(6)

defines a rather “smooth” interpolation between the initial value of zero, at
time k = Kj, and the final value of 1, at time k = Ka.

Figure 2 shows the shape of the prescribed angular trajectory, xj , for
the flat output x,. In this particular instance, the initial value of the angular
position was taken to be z; g, = 7/2 and the final value of the angular
position was taken to be zy x, = —7/2, with K3 = 4s and K2 =6s.

Simulations were performed to obtain the open loop behavior of the sys-
tem state variables and control inputs in accordance with the off-line planned
trajectory 3 ,, as given by (5), (6). A flexible joint manipulator model with
the following parameter values was used for the simulations.

m=04Kg, g=981m/s?, L=0185m, J=0.002N—ms®/rad

I =0.0059N —ms?/rad, K, =1.61 N—m —s/rad

The proposed maneuver entitled starting the motions at time K; = 4, from
an equilibrium position located at z; x, = 7/2, with no initial velocity, and
to perform a rotation of the link, during a time interval of only 2 s, towards
a final position given by 7, x, = —7/2, arriving at the new position also
with zero angular velocity. In order to properly initialize the states of the
manipulator, the initial angular position for the motor axis, corresponding to
the link equilibrium, was computed from the equilibrium condition,

mglL
Tak, = Tk, — e sk, (7)
a

This value turned out to be z3 k, = 1.12 rad. The final resting equilibrium
position for the motor axis, at time k = K3, can be similarly computed. This
yields, T3 Ky — —1.12 rad.

Figure 3 depicts the nominal (open loop) trajectories of the state variables
and the control input variables behavior for the given planned angular position
maneuver on the described flexible joint manipulator.

2.9 A sliding mode based feedback controller design

Using the results of the Appendix, a sliding mode controller can be proposed
which asymptotically forces the system to track the given desired trajectory,

x} r, for the flat output. We consider the following sliding surface coordinate
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function,
O = (11,k+3 — I;,k+3) + a3 (Cl,‘l,k+2 = I;,k+2) + a2 (xl,k+1 - x;,k+l)
+ay (T1 — 71 ) (8)

Let e denote the flat output reference tracking error e = 3 —z}. Then,
if the evolution of oy is indefinitely constrained to zero, the corresponding
zero dynamics is characterized by the following asymptotically stable linear
dynamics

exy3 + 03€x42 + G2€k41 + Q1 =0 (9)

Imposing on the evolution of ok the nonlinear paradigm dynamics ox41 =
I'(ok), described in the Appendix, one obtains from (4) the prescription of the
transformed control input, vy, as

Uk = 2} s — 03 (T1,043 — ] gya) — 02 (L1 k42 — T kp2)

—a (zl,k+1 —xi,k+1)

—r(mm 2 y) + 03 (Brpsz — 5 pra)

+az (T1 k41— $I,k+1) + a1 (1 — x;k))
(10)
where

Tyk+1 = Tk + T2k

K, T? K, T? mgLT?\ |
Tik42 = (1 — T Tk +2Tzox + T T3k + T SIn Iy

K,T? KT8 K, 72
Ty k43 = (1—3 7 )-’rl,k+ (3T— T )xz,k+3( T )anc

K, T3 LT? (| .
+ ( T ) Tyx + mgI <2sm Ty % +sin (T x + Tl‘g,k)) (11)

The complete sliding mode feedback controller is constituted by the ex-
pressions in equations (3), (5),(6), (8)-(11) and (A.12)

3 Simulation Results

Numerical simulations were carried out for assessing the closed loop responses
of the sliding mode controlled flexible joint manipulator represented by the
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previously given parameter values. A rest-to-rest trajectory tracking task was
considered which takes the link from the initial angular position =, x, = 7/2
at time k¥ = K, towards the final desired position z; x, = —7/2 at time
k = K3. The inital conditions for the numerical simulation were taken to be

Ty i, = 1 rad, x2k, =0rad/s, 3 =0.62059 rad, z4=0rad/s

which represent a significant initial deviation from the prescribed trajectory.
The sliding mode controller parameters, as defined in the appendix, were
set to be

A=01, B=006 K=005

The auxiliary function o was chosen in accordance with the stable character-
istic polynomial coefficients given by

a3 =06, ag=012, a;=0.008

i.e., after the sliding surface coordinate reaches zero, the tracking error signal,
ex = T1 x—T1,k, evolves according to the asymptotically stable linear dynamics

exy3 + 0.6ex42 + 0.12ex41 + 0.008ex, =0

whose characteristic polynomial has all its roots located at the point, 0.2+0 7,
located inside the unit circle centered at the origin of the complex plane. The
discretization interval was set to be T = 0.2 s.

4 Conclusions

In this article, we have examined the relevance of difference flatness in the
regulation, via planned trajectory tracking and sliding mode control, of an
approximately discretized flexible joint manipulator model. Difference flat-
ness facilitates a systematic procedure for feedback controller synthesis di-
rectly from the associated difference parameterization provided by the flatness
property. The difference parameterization represents an off line computational
asset for trajectory planning linked to the possibilities of complying with state
variables and control input trajectory restrictions.

Appendix

In this appendix, we present some generalities about sliding mode control
of nonlinear systems. Qur developments are based on establishing a nonlinear
autonomous dynamic system “paradigm” which exemplifies the sliding surface
coordinate behavior. The idea is then to force a particular system output, like
the flat output, to mimic the proposed prererred dynamics, with the aid of a
suitable feedback control action.
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A.1 A Paradigm for Discrete Time Sliding Surface Dynamics

Let K, A,B be three strictly positive numbers with A > B. Consider a
scalar nonlinear discrete-time dynamical system given by the following set of
relations:

K sign oy for |ox| > A
oxt1 =T(ox) = { 55 (lox| — B) sign oy, for B < |ox| < A (A.12)
0 for |0’k| < B

where “sign” stands for the signum function. We then have the following
result

Theorem 4.1 The trajectories of system (A.12) are globally asymptotically
stable to zero in finite time if and only if,

K<A

Moreover, oy globally converges to zero in just one step (i.e., after k = 1), if
and only if K < B.

Proof

Consider a Lyapunov function candidate given by

V(o) =o? ; with Vi =V(oz) (A.13)

Notice that Vi is strictly positive and it is bounded below by zero. Then,
according to the scalar system dynamics (A.12), we have

K% —g? for |ox| > A
2
Vigr — Vi = (Af_f—ay (lok| —B)? — 02 for B< |ok| < A (A.14)
0—o} for |ow| < B

Suppose that, at some instant k, |ox| > A, then for the Lyapunov func-
tion candidate Vi to be strictly decreasing while this condition is valid, it
is sufficient that |K| < |A|, since, then, |K| < |A| < |ox| and therefore
Virr — Vi = K2 — Uz < K2 — A? < 0. Under the above conditions, the evo-
lution of oy, reaches the region B < |ox| < A in a single step. In this region,
the condition |K| < |4| implies that

K2
A B)? (loxl — B)" — of

2 m2
= (AI_{—B)z [(lakl -B)* - (AK—zB)Ui]

Vigr = Ve =
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2 _ 2
< (14[—(—3)2 [(lakl - B)® - (AATB)U;‘:] <0 (A.15)

Therefore, in the region B < |ox| < A4, the magnitude of |¢| monotonically
decreases with finite negative steps given by

A—-B

As it can be seen from (A.16), in the region B < lox| < A, each element of
the sequenc of negative steps {A} is found within the interval,

min {K — A,—B} < Ax < max{K — A,—B}

The magnitude of |o| thus decreases until it eventually satisfies the con-
dition |o(K)| < B at some finite instant K . From the definition of the
dynamics it follows that oy = 0 for k = K+ 1,K + 2,... and the system is
globally asymptotically stable in finite time.

To prove necessity, suppose the system is globally asymptotically stable
to zero in finite time. It follows that, for each k, there exists a subsequence of
integers jx > 1, such that V(k+3j,)—Vi < 0. Then there exists a finite X such
that for all k > K thesliding surface coordinate oy, becomes zero after reaching
the region |o| < B. Suppose, contrary to what we want to establish that
|K| > |A|, then motions starting on the region |o| > (A% + B(K — A))/K will
never leave this region since Vi41 — Vi 2 0 and the magnitude of |o| becomes
constant (and equal to K) after the first step. We have a contradiction since
the system is not globally asymptotically stable to zero.

It is clear that for any given initial condition, ¢(0), at &k = 0, the next
value of the surface satisfies 0(1) < K. Therefore, if K < B then ox = 0 for
k> 2.

K K
Ak =0Ok+1— Ok :(——1) O'k—/rBB (A16)
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Figure 1. Single link flexible joint manipulator.
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Figure 2, Nominal rest-to-rest maneuver for link angular position (flat output).
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Figure 3. Open loop state and input responses for rest-to-rest angular maneuver.
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Figure 4. Closed loop sliding mode controlled responses for rest-to-rest angular maneuver.
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