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Abstract

A simplified model of the hovercraft system, used in
the literature to illustrate nonlinear control options in
underactuated systems, is shown to be differentially flat.
The flat outputs are given by the position coordinates
with respect to the fixed earth frame. This fact is here
exploited for the design of a dynamic feedback controller
for the global asymptotic stabilization of the system’s
trajectory tracking error with respect to off-line planned
position trajectories.

1 Introduction

The control of a ship having two independent thrusters,
located at the aft, has received sustained attention in
the last few years. The interest in devising feedback con-
trol strategies for the underactuated ship model stems
from the fact that the system does not satisfy Brock-
ett’s necessary condition for stabilization to the origin
by means of time-invariant state feedback (see Brockett,
[1]). Reyhanoglu [13] proposes a discontinuous feedback
control which locally achieves exponential decay towards
a desired equilibrium. A feedback linearization approach
was proposed by Godhavn [6] for the regulation of the
position variables without orientation control. In an ar-
ticle by Pettersen and Egeland [8], a time-varying feed-
back control law is proposed which exponentially stabi-
lizes the state towards a given equilibrium point. Time-
varying quasi-periodic feedback control, as in Pettersen
and Egeland [10], has been proposed exploiting the ho-
mogeneity properties of a suitably transformed model
achieving simultaneous exponential stabilization of the
position and orientation variables. A remarkable exper-
imental set-up has been built which is described in the
work of Pettersen and Fossen [11]. In that work, the
time-varying feedback control, found in [8], is extended
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to include integral control actions, with excellent exper-
imental results. High frequency feedback control sig-
nals, in combination with averaging theory and back-
stepping, have also been proposed by Pettersen and Ni-
jmeijer [12], to obtain practical stabilization of the ship
towards a desired equilibrium and also for trajectory
tracking tasks. In [14] the author has examined the ship
trajectory tracking control problem from the perspec-
tive of Liouvillian systems (a special class of non-flat,
i.e. non feedback linearizable systems).

This article is motivated by the recent work of Fantoni
et al [9] where the hovercraft system model is derived
on the basis of the underactuated ship model exten-
sively studied by Fossen [5]. In [9], a series of interesting
Lyapunov-based feedback controllers are derived for the
stabilization and trajectory tracking of the hovercraft
system.

In this article, we propose a dynamic feedback con-
trol scheme for the hovercraft system based on trajec-
tory planning and trajectory tracking error feedback lin-
earization. For both the trajectory planning and the
controller design aspects, use is made of the fact that,
contrary to the general surface vessel model [5], the hov-
ercraft system model is indeed differentially flat. The
flat outputs are represented by the hovercraft position
coordinates with respect to the fixed earth frame (The
reader is referred to the work of Fliess and his colleages
[2]-[4] for a definition of flatness and a full discussion
of the flatness concept with its many theoretical and
practical implications).

Section 2 revisits the hovercraft vessel model derivation
performed in [9], taking as the starting point the fully
actuated, though simplified, ship model also found in
[5] and also in [8]. In that section, it is shown that the
obtained hovercraft system model is differentially flat.
In Section 3 we pose the trajectory tracking problem and
derive a dynamic feedback controller. Section 4 contains
the simulation results and Section 5 is devoted to some
conclusions and suggestions for further research.



2 The Hovercraft Model

In a book by Fossen [5] the following model is proposed
for a rather general surface vessel dynamics

Mv+CWww+Dv = 1

= Jaw (21)
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0 0 1
witha
M = diag {m11,man,ma3},
D = diag {d11,d2,d33} (2.3)

The vector v =[u,v,7]T denotes the linear velocities in
surge, sway, and angular velocity in yaw. The vectorn =
[x,¥,%] denotes the position and orientation in earth
fixed coordinates. The vector r = [ry, 72, 73] denotes
the control forces in surge and sway and the control
torque in yaw. The matrices C(v) and D represent,
respectively, the Coriolis and centripetal forces and the
hydrodynamic damping.

Consider the simplified version of the underactuated
hovercraft shown in Figure 1. A model for such sym-
metric vessel can be directly derived, as already done in
Fantoni et al [9}, from equations (2.1)-(2.3) by enforcing
the following simplifying assumptions

my = Mg, , I =MnT, T2=0,

d.
maaty, dy =dsz =0, f=——

3 =
Mma2

We thus obtain the following model of the underactuated
hovercraft vessel system,

£ = wucosy —vsiny

y = wusiny +vcosy

b= r

U = vr+4my,

v = —ur—fu

P = T (2.9)

We have the following proposition

Propesition 2.1 The model (2.4) is differentially flat,
with flat outputs given by = and y i.e., all system vari-
ables in (2.4) can be differentially parametrized solely
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Proof

From the first two equations in (2.4) we readily obtain
v = ycosy —isiny
Zcosy +ysiny (2.6)

Differentiating now the first two equations in (2.4) with
respect to time. This yields, after use of (2.4) and (2.6)
I =1ucosy —uysiny — vsing — vy cosyp

= T1ycost) +pvsiny
i =usiny + ucos i + ¥ cos 1P —mlrsim,b
= T1ysinty —Pvcosy 2.7
Multiplying the first equation in (2.7) by sin and the
second equation by costy and then subtracting the ob-
tained expressions we obtain, after use of (2.4),

Zsiny — fcosy = Pv (2.8)



Similarly, multiplying the first equation in (2.7) by cos®
and the second by sin and adding, we obtain

Tu = Zcosy) +jjsiny (2.9)

Substituting now the first of (2.6) into (2.8) one obtains,
after some algebraic manipulations
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Using (2.10) in (2.6) we obtain,
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Substituting in (2.9) the value of 3, obtained in (2.10),
leads to the expression for the force input, 7, given in
the proposition. Finally, we make use of the fact that
r=1and 1. = 9.

Remark 2.2 Notice that once 1 and v are obtained as
differential functions of z and y, the rest of the hover-
craft system variables can also be expressed as differen-
tial functions of 1 and v. Indeed, from (2.4) we obtain,

ro= 9
v
u = —-=
¥
™ =% (2.13)

It is clear that all system variables are ezpressible as
differential functions of the flat outputs.

The differential parametrization of the input torque 7.
depends up to the fourth order time derivatives of, both,
the flat outputs, z and y. Notice, however, that the
corresponding parametrization of the control input 7,
only depends up to the second order time derivatives of
z and y. This simple fact clearly reveals an “ obstacle”
to achieve static feedback linearization and points to the
need for a second order dynamic extension of the control
input 7, in order to exactly linearize the system.

Remark 2.3 Use of (2.4) allows the following (sim-
pler) ezpressions for the control inputs 7 and 7y, in
terms of the system’s state variables, the highest order
derivatives of the flat outputs z and y, and first order
eztensions of the control input T,.

T = o _1'_ - (¥™ cosyp — 2™ singp
—Brry — 2r#y — 200 — Bur + fPv)
(2.14)
Fo = z® costp +y™ sing + 26ur?
+28%rv — Bt + 117, (2.15)

3 Trajectory Tracking for
the Hovercraft System

Suppose a desired trajectory is given for the position
coordinates 2 and y in the form z*(t) and y*(t), respec-
tively. The following proposition gives a dynamic feed-
back solution to the trajectory tracking problem based
on flatness and exact tracking error linearization.

Proposition 3.1 Let the set of constant real coeffi-
cients

{01,012,03,0!4} and {71:72173174}

represent independent sets of Hurwitz coefficients.
Then, given a set of desired trajectories z*(t) and y*(t),
for the position coordinates, the following dynamic feed-
back controller
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globally exponentially asymptotically stabilizes the track-
ing ervors e; = r —z*(t) and ey = y — y*(t) to zero.

Proof

Subtracting the controller expression, for 7, in (3.1),
from the open loop expression in the Remark 2.3 we
obtain, after some simple algebra,

[eSf) + a4e$3) + azéz + agé, +a1ez:| cosy
+ [eg") + 74e£3) +73€y + Y2y +m e,] siny
=0

Proceeding in a similar fashion with respect to the cor-
responding closed and open loop expressions for ., one
finds:

— [eg,“) + a4e(,3) + a3é; + agé; + alez] siny

+ [eg") + 74(3&3) + 73éy + 72éy +7le,,] cos
=0

Then, clearly, the tracking errors satisfy the exponen-
tially asymptotically stable fourth order dynamics

eV + el + azé; + e, + e, = 0
z T
65,4) + 7461(,3) + 735,, + ’Yzéy +mey = 0

4 Simulation Results

Simulations were carried out to evaluate the perfor-
mance of the proposed feedback controller for a common
trajectory tracking task: to follow a circular trajectory,
defined in the earth fixed coordinate frame, of radius p,
centered around the origin.

4.1 Tracking a circular trajectory

A circular trajectory, or radius p, is to be followed in a
clockwise sense in the plane (z,y), with a given constant
angular velocity of value w. In other words, the flat
outputs are nominally specified as,

z*(t) =p coswt, y*(t) = p sinwt (4.1)

For this particular choice of z and y, the nominal orien-

tation angle v¥*(t) is given by
. wsinwt — B coswi
¥'(®) = arctan (w coswt + ,Bsinwt)
= arctan(tan(wt —)) = wt — 6

with § = arctan(8/w).

The nominal surge and sway velocities and the nominal
yaw angular velocity are given, according to (2.6) and
the fact that r = 1, by the following constant values
u*(t) —pwsing, v*(t) = pwcosé,
i) = w
Similarly, using (2.9) and the fact that 7. = % we ob-

tain that the nominal applied inputs are given by the
following constant values

Il

T3(t) =0

Notice that for the chosen trajectory, the nominal value
of the quantity Su + 7,, appearing in the denominator
of the controller expression for 7., is given by

Tc:(t) = _pw2 (3089,

Bu+T1y, = —pw(wcosd+ Bsinb)
= —pVpP+wr#0

We have chosen the following parameters for the ref-
erence trajectory, the system, (with the same parame-
ters previously used for the tracking error feedback con-
troller)

p=5 w=01 g=12

which result in § = 1.487 rad, 7, = —4.18 x 10~3

Figure 2 depicts the controlled evolution of the hover-
craft position coordinates when the vessel motions are
started significantly far away from the desired trajec-
tory. Figure 3 shows the corresponding surge, and sway
velocities as well as the yaw angular velocity. Figure 4
contains the angular position evolution and the applied
external inputs.

4.1.1 Robustness with respect to unmod-
eled perturbations: In order to test the robustness
of the proposed controller, used for the circular path
maneuver, we introduced in the non-actuated dynamics
(i.e., in the sway acceleration equation) an unmodeled
external perturbation force, simulating a “wave field”
effect, of the form

Az) = A [sin(fz) + %COS(fo)] ’

( = —ur — fv + A(z) )

with A = 0.6 and f = 10. The results of the simulation
are shown in Figure 5.



5 Conclusions

In this article, we have shown that the underactuated
hovercraft system model, derived through some simpli-
fying assumptions from the general surface vessel model,
is differentially flat. ‘This property immediately allows
to establish the equivalence of the model, by means of
dynamic state feedback, to a set of two decoupled con-
trollable linear systems. A trajectory planning, com-
bined with trajectory tracking error dynamic feedback
linearization, allows to obtain a direct feedback con-
troller synthesis for arbitrary position trajectory follow-
ing. The design was shown to be robust with respect
to significant perturbation forces affecting the non actu-
ated dynamics.

The hovercraft system model is specially suitable for
passivity based feedback control, as already remarked
by Fossen [5] and, indirectly, carried out in [9], from
a Lyapunov stability theory based control strategy. A
fact that can be suitably exploited is that the hovercraft
model can be placed in Generalized Hamiltonian form.
The combination of differential flatness and total energy
managing strategies may conveniently result in a simple
and efficient feedback control option.
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Figure 1: The simplified hovercraft system
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Figure 2: Feedback controlled position coordinates for cir-
cular path tracking Figure 4: Feedback controlled angular orientation and ap-
plied inputs for circular path tracking
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Figure 3: Feedback controlled velocity variables for circular Figure 5: Circular path tracking performance under un-
path tracking modeled sustained perturbations



