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Abstract

In this article, two Generalized Proportional-
Integral (GPI) feedback control schemes are pro-
posed for the stabilization of the angular position
of a DC-motor-actuated rotation inertia load, fixed
to a wall by means of a rotation spring. The feed-
back schemes, which are not based on asymptotic
observers nor calculations based on samplings, use
only electrical variables measurements.
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1 Introduction

Generally speaking, one of the main drawbacks
of state space based control theory and of slid-
ing mode control, in particular, is constituted by
the need to completely measure the state of the
system. Usually, the state is estimated by means
of either asymptotic observers or, as it is usually
done in practice, by resorting to on-line computer-
based calculations of time derivatives of the avail-
able output signals. These derivatives are custom-
arily obtained from suitable output samplings. As
it is widely known, either approach reduces the per-
formance and the robustness of the chosen control
scheme in an important manner.

For the continuous feedback regulation of linear
time invariant systems, whether single or multi-
input, the need for asymptotic Luenberger ob-
servers, or for time discretizations, has been re-
cently side stepped in the work of Fliess et al [1]-
[2]. The main idea of the, so called, Generalized
PID (GPI) approach, which is theoretically based



on localizations, module theory, and Mikusinsky’s
calculus (See Fliess et al [3]), is to pursue an in-
tegrated state feedback controller design based on
naive estimates, or ”structural estimates”, of the
state variables. These state estimates use only it-
erated integrals of the inputs and of the outputs
of the system and, therefore, the controller can be
easily synthesized by use of traditional, or modern,
analog electronic circuits. The closed-loop system
using the structural estimates of the state variables,
in any given linear state feedback control law, only
requires the use of additional compensating iter-
ated integral output error control actions, in or-
der to adequately compensate for the effect of the
incurred structural state estimation errors. Such
reconstruction errors arise from iterated integra-
tion of the unknown initial conditions. The GPI
feedback control design technique has been already
used in the angular velocity regulation of an exper-
imental DC motor inertia system with very good
results (see Marquez et al [5]). We use a similar
experimental model to that described in [5] with an
added linear torsion spring. This simple modifica-
tion renders the system observable thus making it
possible to tackle the angular position control prob-
lem via GPI, i.e., without using mechanical sensors.

In this article, we develop two feedback control
schemes, which are based on the GPI feedback
control approach, for the regulation of an inertia-
spring DC motor system. The synthesis of the
feedback control laws only require electrical vari-
ables measurements for the stabilization of the an-
gular position, to a constant pre-specified value, of
the rotation inertia load which is fixed to a “wall”
by means of a rotation spring while being actu-
ated by means of a DC motor. The first control
scheme is based on Differential Flatness techniques
(See Fliess et al [4]), and it basically entitles a pole
placement technique, while the second scheme uses
Sliding Mode feedback control (see Utkin [6]) in a
manner which also uses no state measurements. In
both cases, the feedback control laws are synthe-
sized using only measurements of the DC motor
armature circuit input voltage and the correspond-
ing DC motor armature current.

In section 2 we present the mathematical model
of the inertia-spring dc-motor system and establish
the main properties of the model. Namely; flat-
ness and constructibility. In section 3 we derive
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the pole placement based GPID controller directly
derived from the controllability (i.e. flatness) of
the system. In this section, we also present the
computer simulation results as well as the exper-
imental results. Section 4 is devoted to describe
and report a new sliding mode control approach,
which does not require state measurements, based
on the GPI control design philosophy. The sim-
ulations and the satisfactorily carried out experi-
mental results are also presented in this section.
Section 5 contains the conclusions and suggestions
for further research.

2 The Inertia-spring DC motor system
Consider the electro-mechanical system shown in

Figure 1. The mathematical model of this system
is readily obtained as:

LI = —RI-kw+u
Jo = —Bw—kb+knl
6 = w 1)

where I is the DC motor armature circuit current,
# is the angular displacement of the motor axis,
measured with respect to a fixed but arbitrary ref-
erence position, and w is the corresponding angular
velocity of the motor axis. The control input, de-
noted by u, represents the external variable voltage
applied to the armature circuit terminals. The pa-
rameters L, R, k. represent, respectively, the arma-
ture circuit inductance, the circuit resistance and
the back electro-motive force constant of the DC
motor. The parameters J, B, k and k,, denote,
respectively, the combined rotor and load inertia,
the viscous friction coefficient, the torsion spring
coefficient and the DC motor torque constant.

Note that the equilibrium of the system, corre-
sponding to a constant desired value of the inertia

load position § = 8, is obtained as

k —
__k )
7 ka, (2)

The system is controllable and, hence, differentially
flat, with flat output given by the inertia load, or

motor axis, angular position §. The flat output sat-
isfies the following differential polynomial relation



with the input,

Jo® + (B + I%]) g+

Kmke + RBY ; Rk, km

(3)

As it can be easily determined from (1), the sys-
tem model is observable for the output y = I. This
fact establishes the constructibility of the system,
which, in turn, implies that all system state vari-
ables are parameterizable in terms of inputs, out-
puts and iterated integrals of the input and the
output variables (See Fliess et al [3]). Such an in-
tegral input-output parameterization of the system
state variables is given, modulo initial conditions,
by

~ t

o = -TLy+i/IU(T)—Ry(T)]dT

0 = ——/8T)d7+ /y(rd‘r——

§ = -39+7 -—e

I = 1I=y (4)

The first expression in (4) is obtained by integra-
tion of the first equation in (1). The second ex-
pression is obtained%y integration of the second
equation in (1). The third relation is just the sec-
ond equation in (1). Note that, for non-zero initial
states, the relations linking the actual values of the
angular position derivatives to the structural esti-
mates in (4) are given by

~ . . k B
6 = 9+90, 9—9+00—790t—790
. < B. Bk B k
6 = 0 —790 J260t+ (J2 —7) 6o (5)

where 6y and o denote the initial mass position
and the initial mass velocity.

3 A pole placement based GPI controller
The differential relation (3) immediately suggests

the following feedback controller for the stabiliza-
tion of the motor shaft angular position around a

desired constant equilibrium value, denoted by 8,

L JR
kmk. A RBY\ ; Rk
+<k 7 L>0+70]
v = —kof —ks0 —ky(6—6)

(6)

In the flatness based controller (6) one proceeds to
replace the angular position 8, its velocity, 6, and
the angular acceleration, 8, by its structural esti-
mates, obtained from the expressions found in (4).
This, however, implies that the closed loop system
would be actually excited by constant values and
by “ramp” functions. To suitably correct for the
destabilizing effect of such structural estimation er-
rors, one uses iterated integral error compensation
as follows:

L JR >
u = E[Jv+(~i—+B)0
+(k+k"£ke+RB>9+hﬂ
v o= —kib— ksl —k(8 — 8) — ki€ — kon
= y-y
3 @]

The closed loop system is obtained by substitut-
ing the GPI controller (7) in the expression (3).
Taking the second order time derivative in the
obtained expression one finds, after replacing the
armature current variable by the expression y =
(J/km )b+ (B/km)8 + (k/kmn)8, one obtains the fol-
lowing closed loop dynamics:

00 + k8@ + (k3 + ki Lyg®
k1B +koJ.x  kik+koB_,
+(k2+$)9+(4)9
km Km
k _
Rk =0 (8)
Em

The desgin coefficients kg, ..., ko are chosen so that
the corresponding characteristic polynomial:

k
p(s) = s +kes™® 4 (ks + %)5(3)

m
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has all its roots located in the left portion of the
complex plane.

3.1 Simulation and experimental results
The system parameters were found to be: J =
11.12 x 1075 kg-m?, k¥ = 0.345 N-m/rad, &k, =
56.37 x 102 N-m/A, and the viscous friction co-
efficient B = 0.6242 x 1073 N-m-s/rad, while the
electrical parameters of the motor were determined
to be L =43.31 mH, R= 30 and k. = 0.076 V-
sec/rad.

Figure 2 presents the simulation results of the per-
formance of the controlled system to the flatness
based controller synthesized on the basis of us-
ing the integral input-output parameterizations of
the flat output and its time derivatives with the
added iterated integral compensation. The con-
trol objective, in this simulations, was to stabilize
the system motions around the constant equilib-
rium value given by § = 0.03 [rad]. The controller
gains were chosen so that the closed loop system
has a fifth order characteristic polynomial of the
form: (s + b)(s? + 2¢wns + w?)?, with b= 80 and
¢ =0.707, w, = 80.

Figure (3) presents the experimental results ob-
tained for the flatness based controller. It should be
stated that in order to overcome the effects of the
unmodeled, but ever present, mechanical friction
and dead zone phenomenon, we added an nonlin-
ear outer-loop friction compensation scheme based
on feeding back the output stabilization error sig-
nal through a generated high gain term of the form
(6/7) arctan{100(g — y)]. This choice arose from
the “magnitude” of the measured dead zone which
was found to be around £3 Volts. This added non-
lincar compensation largely accounts for the dif-
ferences between the simulated and the obtained
experimental results.

4 GPI Sliding mode control
A sliding surface coordinate function, o, that ide-

ally induces, by the sliding invariance condition
o = 0, an asymptotic exponential stabilization of
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the mass position, €, towards a constant desired

value, 8, is given by,

0 =0+ ksf+ ko (6 - 0) (10)

for suitable (Hurwitz) choices of k3 and k,. We
propose, nevertheless, the following modified slid-
ing surface coordinate function, which does not use
the otherwise required measurements of the angular
position, angular velocity and angular acceleration,
but instead uses the structural estimates of these
variables, as defined in the previous section.

G b4kt k(B-0) +hE+kon (1)
with
= v-p 0 €0=0
7= & n(0)=0 (12)

The added iterated integral control action suitably
compensates the constant and the linearly growing
structural estimate errors with respect to the actual
values of the flat output and its time derivatives.
The underlying equivalent (but never used) expres-
sion of the sliding surface in terms of the actual
(unmeasured) values of the load angular position
variables, and its time dérivatives, is obtained by
replacing (5) into (11). The obtained expression is
of the form:

G+ k30 + ky (6 — B)

+ (kl /Ot(y —%g]df - 0‘)
+ [ o [ w00 6] ar )

where the constant parameters o and 8 depend on
the initial conditions for § and . The ideal sliding
condition, & = 0, is easily seen to be equivalent to
the following forth order closed loop system, which
is completely independent of any initial condition
values.

o

0 + (ks + Kk i)e‘” + (k2 + kB +M)(§
km km
kik  koBY :  kok, -
Clpn 0¥ -7) = 14
+(km+km>0+km(6 ) =0 (14)

where, as before, use has been made of the flatness-
based differential parameterization linking the sys-
tem output, y = I, to the flat output 8. It is clear



that a suitable choice of the design parameter set
{k3, ko, k1, ko} yields an exponentially asymptoti-
cally stable closed loop dynamics for the mass po-
sition 6.

We propose the following discontinuous sliding
mode feedback controller:
W >0

u=1u— W sign 7, (15)

4.1 Simulation and experimental results
Figure 4 depicts the sliding mode simulated con-
trolled evolution of the mass position, the sliding
surface time evolution, d(t), the motor current and
the oxternally applied input voltage. The desired
objective was to stabilize the system motions to
§ = 0 [rad] from an initial position of 6 = 0.03
[rad] and an initial current I(0) = 0.183 [Amp].
The design constants were chosen to be the coeffi-
cients of a fourth order polynomial, in the complex
variable s, of the form: (s® 4+ 2¢w.s + w?)?, with
¢ =0.707, w, =80. We also set, W = 10.

Figure 5 depicts the system variables responses ob-
tained from the experimental results.

5 Conclusions

In this article we have presented two feedback con-
trol schemes for the regulation of the angular po-
sition in an inertia-spring DC motor system. The
desired objective is to bring the inertia load to-
wards a desired constant equilibrium value. A pole
placement approach and a sliding mode control ap-
proach were used in a real laboratory experimental
set-up. The control laws, which were obtained from
the GPI control approach, are solely based on on-
line processing the input and the output electrical
signals associated with the DC motor. Namely, the
applied input voltage to the armature circuit and
the resulting armature circuit current. No other
signals, such as those arising from mechanical sen-
sors, were used in the feedback law. The load po-
sition was measured only for the purpose of verify-
ing the effectiveness of the proposed feedback con-
trol scheme. The proposed GPI feedback control
schemes have, thus, been shown to successfully con-
trol the angular position of electromechanical sys-
tems without requiring any mechanical sensors. All
the system parameters in the experimental set-up
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were identified in an off-line fashion. An interest-
ing work for the future will be to obtain a simi-
lar feedback “sensorless” feedback control scheme
which identifies the crucial parameters in an on-line
fashion.
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Figure 2: Simulation results for the pole placement
based controller

Figure 3: Experimental results for the pole placement
based controller
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Figure 4: Simulation results for the sliding mode
based controller
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Figure 5: Experimental results for the sliding mode
based controller



