2001 European Control Conference
Portos, Portugal, September 4-7,2001.

SLIDING MODE CONTROL WITHOUT STATE
MEASUREMENTS

Hebertt Sira-Ramirez *, Richard Marquez, !, Victor M. Hernéndez *

* Cinvestav-LP.N
Dept. Ingenieria Eléctrica
Avenida IPN, # 2508, Col. San Pedro Zacatenco, A.P. 14740
México, D.F., México.

fax:
e-mail:

+ 52.5.747.3866
hsira@mail.cinvestav.mx

t Laboratoire des Signaux et Systémes
CNRS-Supélec, Plateau de Moulon
91192 Gif-sur-Ivette, Cedex, France.

e-mail:

marquez@lss.supelec.fr

¥ Universidad Autonoma de Querétaro
Facultad de Ingenieria
Centro Universitario, Cerro Las Campanas
76010 Querétaro, México.

e-mail:

Keywords: Generalized PID, stiding mode control, Flat sys-
tems.

Abstract

In this article we present, in a tutorial fashion, an introduc-
tion to the links between flatness, generalized PID control and
sliding mode contro! of linear systems. Several simple illus-
trative examples are presented including computer simulations
and experimental results.

1 Introduction

One of the main drawbacks of state space based control theory
and, in particular, of sliding mode control, is constituted by the
need to completely measure the state of the system, or to esti-
mate it by means of either asymptotic observers or, as usually
done in practise, to resort to on-line computer based calcula-
tions of time derivatives of output signals, obtained by suitable
time discretizations. As it is widely known, either approach re-
duces the performance and the robustness of the chosen control
scheme in an important manner. For the continuous regulation
of linear time invariant systems, whether single or multi-input,
the need for Luenberger observers, or time discretizations, has
been recently side stepped in the work of Fliess et al [1], [2].
The main idea of this approach, which is theoretically based on
localizations, module theory, and Mikusinsky’s calculus, is to
pursue an integrated state feedback controller design based on
naive estimates, or "structural estimates”, of the state variables.
These state estimates use only iterated integrals of the inputs
and of the outputs of the system and, therefore, the controller
can be easily synthesized by use of traditional, or modern, ana-
log electronic circuits. The closed-loop system using the struc-
tural estimates of the state variables, in any given state feedback
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control law, only requires the use of additional integral action,
based only on the output signal, in order to adequately com-
pensate for the effect of the incurred structural state estimation
errors. This control design technique, addressed as General-
ized PID (GPID) control, has been used in the regulation of an
experimental system with very good results [5].

In this article, we present, in a tutorial manner, an introduc-
tion to generalized PID control in the context of sliding mode
regulation for some linear systems and a nonlinear system of
general interest.

In section 2 we review the implications of GPID control in
sliding mode control of an elementary SISO system. A slid-
ing mode controller is synthesized by means of integral input-
output parameterizations of the flat output variables. Section 3
presents the sliding mode control of a linear system of phys-
jcal nature. We illustrate the obtained results by performing
computer simulations to assess the properties of the proposed
sliding mode regulators. Section 4 presents an experimental
implementation of GPID control to a single link manipulator.

2 Generalized PID sliding mode control of lin-
ear systems

We begin this section by providing a motivation of our ap-
proach using a rather simple example of traditional sliding
mode controller design on the phase plane.

2.1 Sliding on the phase plane

Consider the linear controllable second order integrator system

j=u M



In traditional sliding mode control (See Utkin [6]) one consid-
ers the following linear sliding surface, defined in the phase
plane (y,y) of the system:

S={(y.9) €eR*|o=g+ky=0, k >0} (2
The choice of (2) is evidently motivated by the asymptotic ex-
ponential stability features of the first order dynamics: y+ky =
0, associated with the ideal sliding condition ¢ = 0. We have
then the following proposition

Proposition 2.1 Given the linear system (1), the discontinuous
Sfeedback controller

&)}

locally creates a sliding motion on o = 0, within the rectangu-
lar region of the phase space, bounded by:

u=—Wsign o

W w

ﬁ ) ' Yy | < ?

Under ideal sliding conditions 0 =0, 6 = 0, the system is gov-
erned by the asymptotically stable dynamics § = —ky. More-
over, the rectangular region (4) is reachable, in finite time, from
any finite initial condition in the phase space. Once the region
(4) is reached the controlled system trajectories never abandon
this rectangular region.

lyl < O]

The proof of the above proposition follows rather directly from
the computation of the first order time derivative of the sliding
surface coordinate function, o. This results in

o=9+ky=u+ky 5)
The discontinuous feedback control, u = —1Wsign o, with
W > 0, applied on the system, is guaranteed to globally force
the system phase trajectories to reach the sliding surface 0 = 0,
in finite time, and, more importantly, to locally force the mo-
tions to stay on such a line. This assertion is valid provided the
design constant W, “dominates” the quantity k g, regardless of
its sign, in the aim of forcing & to be strictly negative. The rest
of the proposition follows easily (see also Ukin [6]).

2.2 Evading the need to measure

2.2.1 Modified sliding surface

If no reliable measurements of the phase velocity variable y
are allowed, or available, then the above sliding mode con-
troller cannot be implemented. It is also known that the perfor-
mance, and the robustness, of the sliding mode control scheme
is substantially lost when an asymptotic observer, such as a
reduced order observer of the Luenberger type, is used to es-
timate the phase variable g, based on the output measurement,
y, and knowledge of the control input u.

Note, that from the system equations, and modulo an unknown
constant initial condition y(0) = yo, the quantity, fot u(r)dr,

constitutes a “structural estimate”, which we may denote by i;,
of the phase velocity 3. In fact, the actual relation between gy
and g is given by the relation

t
5= /o w(r)dr=g - g ©)

Based on the previous observation, we propose the follow-
ing modification of the sliding surface coordinate function, o,
which is now synthesized on the basis of the input, u, the out-
put, y, and their integrals:

T =

ot t
/ w(P)dr + kay + Ky / y(r)dr
4] 0

oy + /o (u(r) + kay(r))dr ™

The added integral of the output y, in the sliding surface co-
ordinate expression (7), is aimed at compensating the constant
initial condition off-set error existing between the structural es-
timate, ¥, and the actual value of the variable g, as it is shown
below.

2.2.2 Conditions and domain of existence of sliding mani-
fold

The time derivative of the new sliding surface coordinate func-
tion, @, results in

G=ult)+ kay+kiy (8)
The sliding mode controller u = —Wsign & forces the system
phase trajectories to reach the sliding surface @ = 0, provided
the following reaching conditions are satisfied

W < kyytky < W ©)

which now represents, in the original phase space (y,y), an
infinite region containing the origin, bounded by two parallel
lines, and entirely containing the straight line: § = —k; /kay.
This fact is to be immediately contrasted with the nature of
traditional sliding mode control in the previous proposition.

The equivalent control, obtained from the condition: 6= 0, is
clearly given by

(10)
Evidently, under suitable choice of the design parameters k;
and ks, the controlled motions on, ¢ = 0, are associated with
the following exponentially asymptotically stable ideal sliding
dynamics:

Ueqg = —ky —kay

Y+ ky +ky =0 (1m

2.2.3 Analysis of sliding manifold dynamics and state es-
timation

Consider then the following extended system

(12)



with initial conditions given by: 3(0) = yo, #(0) = g, 7(0) =
0and £(0) = 0. Notice that at least one state equation in (12) is
redundant. This is due to the fact that jj = ¥ — 1. In fact, then,
we have a third order system. For the third order system (12),
the sliding surface will be chosen as: §= y+kyy+k; £. Using
the phase velocity structural estimate, ¥ in terms of the input
u, we obtain the following equivalent value of the proposed
sliding surface, written now in terms of the unknown initial
condition, yo:

¥ +kay+ ki€ —kajo
t

g+ kay + ky / y(r)dr —kago
0

5
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Clearly, under ideal sliding motions, § = 0, the closed loop
system results in the following integro-differential system ex-
cited by a constant unknown quantity:

t
PR klf y(r)dr = kajio (14)
0

It is evident that, for a suitable set of Hurwitz coefficients, k,
and k;, system (14) is equivalent to the exponentially asymp-
totically stable differential polynomial system: §+koy +kiy =
0.

Note also that, under ideal sliding conditions, the equivalent
control method allows one to conclude that the motions of the
(reduced) second order ideal sliding dynamics are governed by
the linear system,

Yythky+ki& = ko

£ =y (15)
The equilibrium point of the linear system is clearly given by
y=10,y =0and £ = (ko/k1)yo. In other words, given the
asymptotic exponential stability of the underlying second or-
der equivalent system, 4 4+ k29 +k1y = 0, the introduced vari-
able, £, has been shown to converge towards a constant quantity
which is proportional to the unknown initial condition, go. The
relation with the previous development is clear upon realizing
that indeed, 7 = 5.

Proposition 2.2 A second order system of the form: § = u,
is globally asymptotically exponentially stabilized to the origin
of phase coordinates (y,y) = (0,0) by the following dynamic
sliding mode controller:

u = —Wsigné
t
G = /u(v‘)d‘r+k2y+klf
1]
£ =y &0)=0 (16)

Sor all initial values, y(0), y(0), of the phase variables, y and
y. A sliding regime golobally exists in the infinite region of the
phase space bounded by the linear relations:

W < ky+hy < W

The variable £ asymptotically exponentially converges to the
constant value (k2 /k1)o.

Figure 1 depicts the generalized PID sliding mode feedback
control scheme for the regulation of the second order integra-
tor system. The simulations presented in Figure 2 correspond
to a typical response of the second order plant system to the
proposed sliding mode controller scheme. In these simulations
we have set ky = 2{wn,, k) = wfl with{ =08 and w, = 1.
The switching gain W was set to the value of 2.

3 Controlling the position of a mass-spring sys-
tem without mechanical sensors

In this section, we apply the GPID sliding mode control scheme
to the problem of controlling the position of a mass-spring sys-
tem, shown in Figure 3, with the sliding mass attached to a
wall by a spring characterized by a stiffness constant of value
k. Consider then the system model as:

Mi+kz = kI
di o .
La+Rz = u—keyi
y = 1 an

where M is the load mass, L is the motor’s armature circuit
inductance, R is the corresponding resistance, k is the stiffness
constant of the spring linking the load to a fixed point in the
wall, k,, is the motor torque constant, and k. is the counter
electromotive constant of the motor. The constant v is a pro-
portionality constant relating the motor’s shaft angular velocity
to the linear tangent velocity of the gear interacting with the
mass. The variables z and 7 and u, respectively, denote the
load position, the motor’s armature circuit electric current and
the applied input voltage. The only measured variable, aside
from the externally applied voltage u, is the armature circuit
current 7, which we denote by y.

Note that the equilibrium of the system, corresponding to a
constant desired value of the mass position z = 7, is obtained
as

k _ Rk

¥y= 7,

K .

The system is controllable and, hence, differentially flat, with

flat output given by the load position z. The flat output satisfies

the following differential polynomial relation with the input,
Mz® 4 ¢i+ (k +M> i+, _

T T 7

(19)
The system is also observable, and hence, constructible. An

integral -input-output parameterization of the system state vari-
ables is given by

t
zZ = —k—ij—y+-];:—7/o [u(7) — Ry(r)]dr



- kol ¢
z = M/o Z(r)dr +ﬁ y{r)dr

o k. kn

&= -7 +ﬁ y

T = I=y (20)

The first expression in (20) is obtained by integration of the
second equation in (17). The second expression is obtained by
integration of the first equation in (17). The third relation is
just the first equation in (17). Note that the relation linking
the actual values of the position derivatives to the structural
estimates in (20) is given by

~ k ~ k
r=7I+ z0, i:z’+:i:0—ﬁmut, frfzj%—ﬁmo 21

where zy and 2 denote the initial mass position and the ini-
tial mass velocity. A sliding surface coordinate function, o,
that induces, by the ideal sliding condition ¢ = 0, an asymp-
totic exponential stabilization of the mass position, T, towards
a constant desired value, Z, is given by,

U=I+k3.’t+k‘2(.’t—f) (22)
for suitable (Hurwitz) choices of k3 and k,. We propose, never-
theless, the following modified sliding surface coordinate func-
tion

=%+ kst +ko(F—F) + k1 &+ kon (23)
with
. k
no= & n(0)=0 24)

The added iterated integral control action suitably compensates
the constant and the linearly growing structural estimate errors
with respect to the actual values of the flat output and its time
derivatives. The underlying equivalent expression of the sliding
surface in terms of the actual (unmeasured) values of the mass
position variables, and its time derivatives, is of the form

~
o =

t k
G+ kot +ha(z—F) + (klf[y—k—i]dr—a)
0 m

+ko '/OL [/Of(y—éi)dp —ﬂ] dr

where the constant parameters « and 8 depend on the initial
conditions for z and &. The ideal sliding condition, @ = 0, is
easily seen to be equivalent to the following forth order closed
loop system,

(25)

koM
km

kik
)i +k‘—ma;- + l%: z—7)
(26)
where use has been made of the flatness-based differential pa-
rameterization linking the system output, y = I, to the flat out-
put z, which, from (17),is givenby y = (M /kmn)E +(k/km)=.
1t is clear that a suitable choice of the design parameter set

2™ + (ks +ki kﬂ)z“# (k2 +
m

{k3, ka2, k1, ko} yields an exponentially asymptotically stable
closed loop dynamics for the mass position z.

We propose the following discontinuous sliding mode feedback
controller

u=u—Wsigng, W >0 @7
Figure 4 depicts the sliding mode controlled evolution of the
mass position, its velocity, the motor current and the externally
applied input voltage. The desired objective was to stabilize the
system motions to T = 0. The system parameters were chosen
as: M =05kg, k =1 Nm, kn, = 0.6 N/A, kv = 0.06
V-s/m. The design constants were chosen to be the coefficients
of a fourth order polynomial, in the complex variable s, of the
form (52 + 2¢wns + w?)? with ¢ = 0.8, w, = 5.

4 Regulation of an inverted pendulum

Consider the non-linear system constituted by a pendulum
driven by a DC motor. The system model is given by:

dI
Lo +RI+kd = v
qu. +B1nlj = kml_ TL
mL*i+ Brg+mgLsin(g) = 7 (28)

where I is the current in the armature circuit, v is the applied
external voltage and g denotes the angular position of the mo-
tor axis. The parameter m represents the mass of the pendu-
lum, assumed to be concentrated at its bob. The rest of the
parameters were already defined in the previous example. It is
assumned that the only variables measured are the armature cur-
rent I and the applied voltage v. No mechanical variables g, g,
etc. are assumed to be used for feedback purposes.

Eliminating the torque 7 between the mechanical equations
yields:
dI
L—+4+RI+kg = v

dt
J§ + B¢+ mgLsin(q) km{

where
J=(Jp+mL?), =(B. +BL)

It is desired to have the flat output F' = ¢ to follow a pre-
specified trajectory,
F o F*'(t)

The system is found to be locally observable, from the DC mo-
tor current variable I for the values S < ¢ < 7. Never-
theless, the system is globally constructible, since the system
variables are expressible in terms of inputs and outputs.

The differential parameterization of the control input v is found
to be given by:

LB ..
i—LF(:’) + (k_ +R—J) F+ imgL sin(F)

v o=
m m km k"‘l

2 3 .
+ (mkg cos(F) +1):—B + kc) F

m



An integral reconstructor of the angular position is given by

ﬁ(t):-él(tﬁ/‘]' [k—lev(r)—k—]ff(f) dr

which is a linear reconstructor.

The relation between the reconstructed state ' and its actual
value F' is given by R
F=F+F

For regulation of the system we propose the following sliding
surface

o= I=T"(t)) + ki (F = F*(¢)) +k0/‘)t(1— I*(r))dr

Flatness of the system allows one to compute T*(t) as:

I“(t) = ki [JF'(t) + BE*(t) + mgL sin(F‘(t))]

m

Taking the first order time derivative of ¢ leads to:

. R ntd *
g = %— ZI—’C]F (t)+k0(1 -1 (t))
ke
+(k1—f)F

The natural selection of the discontinuous feedback control
law, based only on measured or estiimated quantities is given

by:
R o 5 '
v=L ZI+ kyF*(t) —ko(I —I7(t))| — Wsign(o)

which results in the following closed loop dynamics for the
sliding surface coordinate function.

¢ =(k — %)F— Wsign (o)

Evidently, for a sufficiently large value of W, a sliding mode is
guaranteed to exist on o =0. We define:

F— F*(t)
—[sin(F) —sin(F*(1))]

€

v =

The ideal sliding dynamics associated with the invariance con-
ditions of the sliding surface, 0 = 0, & = 0 results in:

4 (B+JJk0>é,+ <k1km+Bk0> ;

J
L
= m;’ [+ kov]
The ideal sliding dynamics associated with the closed loop sys-
tem is then constituted by a linear system with a stable transfer
function of the form:

e Y38+ V4

v os(s2+ms+ )

This linear system is negatively fedback by a nonlinear func-
tion, 1 (e), of the tracking error e, specifically given by: 1(e) =
sin F'— sin F'*(t). This is a bounded nonlinearity which mono-
tonically grows on the interval, [—Z-, 7). Thus, the nonlinearity
qualifies as a sector nonlinearity. According to classical abso-
lute stability results, (See Khalil [4]) the system can be shown
to be locally asymptotically stable for a suitable choice of the
design parameters.

Figure 5 shows the experimental results of a stabilization task.

5 Conclusions

In this article, we have extended the generalized PID control
technique, introduced in [1], to the sliding mode regulation of
elementary linear and nonlinear dynamic systems of the SISO
type. As in the continuous counterpart of GPID control, the
need for asymptotic observers, or time discretizations, devised
to compute needed states in the feedback law, is evaded, or
sidestepped. The traditional state based sliding surface design
is to be maintained, but now expressed through a suitable in-
tegral input-output parameterization of the unmeasured states,
complemented with added iterated integral compensation in or-
der to avoid all possible structural de-stabilizing effects of esti-
mation etrors and external perturbations. It can be shown that
the GPID sliding mode controller design is quite robust with re-
spect to a large class.of externa perturbations and significantly
large unmodelled parameter variations. Many other interesting
issues, related to GPID control, will be discussed and illus-
trated in a forthcomming publication, from a general theoreti-
cal viewpoint [3].

The multivariable case offers no particular difficulty, specially
if the controller design task is approached from a differential
flatness viewpoint.
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FIGURES

Figure 1: The generalized PID sliding mode control scheme for
a second order integrator system
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Figure 2: Response of GPID sliding-mode controlled second
order integrator system

Figure 3: Mass-spring-DC motor system
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Figure 4: GPID Sliding mode controlled responses of the mass-
spring-DC motor system

Figure 5: GPID Sliding mode controlled responses of the
pendulum-DC motor system



