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Abstract

In this article we present a tutorial introduction to Generalized
Proportional-Integral-Derivative Control (GPID). We particu-
larly emphasize the links between flatness and GPID control, in
the context of linear dynamic systems. We present several illus-
trative design examples, some of them of physical flavor. The
performance of the controlled systems is evaluated by means
of digital computer simulations.

1 Introduction

One of the main drawbacks of modern state space-based feed-
back control of dynamic systems is constituted by the need to
completely measure the state of the system or to estimate it,
by means of either asymptotic observers or, in practise, to re-
sort to calculations based on time discretizations of the mea-
sured signals. Either approach reduces, in an important man-
ner, the performance of the preferred feedback control scheme
with respect to unmodelled parameter variations and other ex-
ternal perturbations. For the continuous regulation of linear
systems, the need for state observers, or time discretizations,
has been recently side-stepped by the introduction of a new de-
sign approach called “Generalized PID Control” (GPID}) (see
Fliess [1], Fliess et al [4]). The theoretical foundations of this
technique are found in the concept of localizations, within the
context of the module theoretic approach for linear systems.
The GPID technique is an integrated estimation-feedback con-
troller design based on “structural” estimates of the state vari-
ables rather than on their asymptotic estimates. The structural
estimates are formed using inputs, outputs and iterated inte-
grals of the inputs and the output signals of the system. Thus,

they can be easily synthesized by use of, either, digital micro-
processors or traditional analog electronic circuits. Evidently,
such “integral reconstructors” exhibit constant “off-sets” and
iterated integrals of such off-sets when compared with the ac-
tual state values. Nevertheless, one proceeds to complete the
state based closed loop system design by complementing the
use of the structural estimates of the state variables with the
use of additional, robustifying, integral control actions. The
added integral control action is based, naturally, on the output
errors and they are devoted to adequately compensate for the
de-stabilizing effect of the incurred state estimation errors. In
essence, GPID control is an improved output feedback control
technique without any of its inherent limitations. It indirectly
combines the full power of state feedback, without devoting
any efforts to exact state reconstruction, with the known bene-
fits of integral control. The GPID feedback control technique
has been already used in the effective regulation of an experi-
mental DC motor system platform with excellent results (See
Marquez et al,[5]).

In section 2 we briefly revisit GPID control from an elemen-
tary viewpoint. In particular, we stress the importance of the
flatness property (See Fliess et al [2], [3] for basic definitions)
in the state feedback controller design task for either stabiliza-
tion or output trajectory tracking objectives. This issue is par-
ticularly important in output reference trajectory tracking tasks
for non-minimum phase systems, where the output reference
tracking problem must be translated into a flat output refer-
ence trajectory tracking task. The flatness based controller is
then synthesized in terms of integral input-output parameteri-
zations of the system’s state variables. Section 3 is devoted to
explore the implications of the design approach in the regula-
tion of some nonlinear systems of physical nature. We illustrate
the obtained results by means of computer simulations.



2 Some illustrative examples
2.1 Controlling a second order integrator

Consider the second order system

T = T2
iz = u
v = = )

The system is evidently flat, and also observable, hence, con-
structible. The flat output is just the system output y which we
also denote by F' Assume that the initial value of the non mea-
sured state z, is completely unknown and denote it by by z40.
‘We have then the following differential parameterization of the
system variables in terms of the flat output:

n = y=F
Ty = g}=F
u = §=F @

The integral input output parameterization of the system state
variables is given, modulo initial conditions, by

z ./: u(r)dT

& = =y &)
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Note the exact relationship between the previous integral pa-
rameterization and the system state variables:

t
) / u(r)dr + x99 = T2 + 220
0

B o=y (O]

A stabilizing linear state feedback control law for the given
linear system may be proposed to be

u=-kz —kz =-kiy—ky = -kiF =k F' (5)

with k; and k;, being strictly positive constant coefficients as
of yet unspecified value. Let £ be an auxiliary control input. In
order to avoid the measurement of the (flat) output derivative, g,
we use instead of (5) the following control law complemented
with an auxiliary input variable £ yet to be determined,

t
w=—kiy—kyEy +&=—kiy— kz/ u(r)dr + ¢ (6)
0

Since the variable %, has an offset error with respect to zo, it
can be easily seen that this feedback law, in terms of the actual
states z; and o and the unknown initial state value 3, is
equivalently given by

M

u=—kizy —kaZo + koxoo +€

The purpose of the auxiliary input variable £ should now be
clear, as it must compensate for the disregarded initial value of

the unavailable variable . The closed loop system, using the
control law 4 is given by

®)

Letting § = —koy with £(0) = 0, one obtains the closed loop
system

J+koy+kiy = kazao + &

¢
i+ ky+ kyy + k[)/ y(r)dr = kaz2o )
0

Evidently, for any initial condition 49, the closed loop system
dynamics satisfies the relation:

y®) +kyij + kg + koy =0 (10)

which can be made asymptotically exponentially stable by suit-
able choice of the constant coefficients kg, k; and k,.

‘We summarize the obtained controller in the following propo-
sition.

Proposition 2.1 Let ko, ki and ky be constant coefficients of
the Hurwitz polynomial p(s) = s + kos® + k1 s + ko. Then,
given the linear system (1), the following dynamic feedback
control law, synthesized purely in terms the output, the input,
and some of their integrals,

t
—kiy —k; d
u. 1y z/o u(r)dr + ¢
£ = —koy, €0)=0 an

renders the closed loop system exponentially asymptotically
stable as it is governed by

v + ko + kg + koy =0 (12)

Figure | shows the GPID feedback controller scheme for the
second order integrator. Figure 2 shows the simulation of the
closed loop system response and the various signals. We used
the following strictly positive design parameters:
ko = wiB, ki = 2wnf +wy, k2 = 2wn + 5
which yield a characteristic polynomial for the closed loop sys-
tem of the form (s? + 2fwns +w2)(s + B), with
€=0.707, w, =3, =2

In figure 1 we also show the structural estimate of zo = §
which exhibits a constant off-set with respect to the actual
value.

3 GPID Control of some physical systems

3.1 Stabilizing a boost converter circuit without inductor
current measurements

The average normalized model of a PWM controlled boost con-
verter circuit is given by

£ = —uze+1
iz = urn —Iz/Q
y = 1z 13)



yields a closed loop characteristic polynomial for the flat output
behavior of the form (s? + 2€w,s + w2)(s + f).

We summarize the previous result by means of a proposition.

Proposition 3.1 The average model of the nonlinear "boost”
converter circuit is locally asymptotically exponentially regu-
lated to a desired average output voltage equilibrium value, 7,
by means of the following GPID feedback controller:

u = uU+tus
us = Rys(t)+46
§ = Sys+ Pus, 0(0)=0 (20)
with the constant parameteres P, R and S given by,
Q? 7,1 1,1 ]
S = ———— |5 -k)+=(5 -k
7(Q2+27%) olg k) *glE k)
@’ [53 1 -y ]
P = ——————— |=(= k) + = —k
g(Q2+2yg) Q(Q 2) y(yg 1)
Q? [_ 1 27, 1 ]
R = ———————|9(=-k) - =(5-k)-a
7 (0 127 y(Q 2) Q(yz 1)
e39]

The design parameters ky, ky and a are chosen so that the
Jollowing polynomial in the complex variable s is Hurwitz.

Q7 Q'
BT oL

p(s) =8+ kys® + (ky

As clearly portrayed in Figure 3, the proposed dynamic feed-
back controller only processes the incremental output voltage
ys and the incremental control input us, with no measurements
of the average inductor current z;.

Figure 4 shows the GPID feedback controlled responses of the
normalized nonlinear boost converter (13) for small initial state
perturbations around the desired equilibrium point.

In order to test the robustness of the GPID control scheme, we
hypothesize an unmodelled sudden (i.e. discontinuous) varia-
tion of the normalized load parameter value (). The variation
was allowed to be of 500% the nominal value, occurring at
nonmalized time ¢ = 10. This was followed by a permanent
variation of , at time ¢ = 25, to one fifth of its original value.
Although, as expected, the inductor current is severely affected
by these variations, the output voltage automatically recovers
the desired constant reference value. The simulation results in
Figure 5 clearly demonstrates the remarkable robustness of the
proposed approach.

3.2 Control of the cart-pole system measuring only the
cart position

Consider the cart-pole system, shown in Figure 6. This system
has been extensively treated in the literature as an example of
a nonlinear system which is unstable and non-minimum phase.

1t is required to control the system, through the application of
an external force, so that the pendulum rests on its unstable ver-
tical equilibrium position. The nonlinear model of the system,
neglecting friction terms, is given by

mL cosfi + (J + mL*)f = mLgsin6

(M +m)i +mLécos6 —mLEsinf = f (22)

where 7 is the horizontal distance traveled by the cart and 8
is the angle of the pendulum with respect to the vertical line.
M and m stand, respectively, for the cart and the pendulum
masses, L is the distance from the base pivot to the center
of mass of the pendulum and g is the gravity acceleration. J
stands for the pendulum’s moment of inertia with respect to the
center of gravity. The control input is the force f, applied to
the cart. We assume that only the variable £ may be measured.

The nonlinear system (22) is known to be non-differentially
flat. The system’s Jacobian linearization around the unstable

equilibrium point, located at the value z = T = constant

and § = 6 = 0, is characterized by the incremental state
[z5,%5,05,05), defined as

Ts=xz—7%, &5=4, 05=06, 0s=0, fi=f
The linearized system, written in normalized variables: {; =
(z —T)/L,us = f/mgand T = (\/g/L) t, is given by
55 + cé(; = b
vés+0s = us
withe = (1 +J/mL?),v= (1 + M/m).

23

The linearized system (23) is, however, controllable and hence
flat. Moreover, the system is observable from the normalized
incremental position variable &5 and it is unobservable from the
angular position variable 65. The flat output is given by,

Fs =&+ ¢b;

which has the physical interpretation of being the normalized
value of the incremental center of oscillation of the system (the
Huygen's center of oscillation). The natural state variables of
the linearized system and the incremental control input may
be expressed in terms of Fj; and a finite number of its time
derivatives,

& = Fs —EF,s, {55 = Fo - eFé(s)
8 = Fs, 65=F"
us = (1—enF +qF; @4

Notice that if we regulate the incremental flat output Fj to zero,
along with its time derivatives, then the incremental normalized
distance £5 and the angular position, 85 = 8, are both, simulta-
neously, regulated to the desired equilibrium.

A stabilizing flatness-based controller is immediately obtained
from the previous parameterization. This is given by

us = vEs+(1=e7) [k FY — kaly — ks s — km] @5)



where u is the average control input (also known as “duty ra-
tio””) bounded within the interval [0, 1]. The state variables x,
and z, represent, respectively, the average inductor current and
the average capacitor voltage which is the system output. The
parameter @ is the circuit quality, directly related to the value
of the load resistance. The constant additive input “1” repre-
sents the normalized constant voitage source value.

The capacitor voltage is a non-minimum phase output variable
as it has been shown in Sira-Ramirez and Lischinsky-Arenas
in [7]. It is usually required to keep this output voltage at a
fixed desired, strictly positive, average equilibrium value 7, =
7 > 1. The corresponding equilibrium values of the inductor
current and the control input are given by
72
T = y—, u=

Q

2| -

The jacobian linearization of the system, around the operating
equilibrium point, is given by

. 1 _
Tig = T =T8T YU
Y
I lx lz + gzu
Ty = Ty /Tt FUs
Q Q
Ys = Tos (14)

where 215 = 21 — Ty, 25 = T2 — ¥ and us = u — U are the
incremental variables around the given equilibrium.

The linearized system transfer function clearly depicts the non-
minimum phase character of the system incremental output

_7 s —Q/7
=0 (32 +(1/Q)s + (1/yz)> us

(15)

The linearized system is controllable and observable, hence flat
and constructible. The flat output and its time derivative are
given by the expressions

—2
Fy = Tixi6 +Taxps = (%) Z15 + YT
. 2y
Fs = x5- 5‘/126 (16)

which are, respectively, the incremental average total stored
energy and the incremental instantaneous average consumed
power. The differential parameterization of the state variables

is given by
Ty = y(QYQ—-:QgQ)(FJ - %Ej)

The integral input output parameterization of the incremental
average state variables and that of the flat output are readily

obtained from the system equations and the definition of the
flat output, as

R 1 t _ t
Ty = —:/ ya(‘r)df—y/ ug(r)dr
0 0

Y
Tos = Ys
. 7 [ 7
Fs = ﬂyg——/,grdT—— ug(7T)dr
s 0 Oy() aJ; s(7)
= 1 t 2%
Fs = —:/ yg(‘r)dr—y/ ug(r)dr — Zys
YJo [3} Q

Note that the actual relation linking the incremental flat output
and its time derivative to their estimates is given by

=2 -
~ y - B

Fs =F5+5116(0), Fs = Fs + 215(0) 17)
where z15(0) is the unknown initial value of the average in-
cremental current variable z1. As in many other instances, the
previous relation reveals that: “the derivative of the estimate
does not necessarily coincide with the estimate of the deriva-
tive”.

A flatness based stabilizing incremental feedback controller is
immediately obtained from the differential parameterization of
the incremental input variable us as

2 1 : 1
Q ) [(——kz)Fts +(17_2_k])F6] (18)

Ug = — —————
(T N N9

Based on the previous controller, we proceed to propose the
GPID controller as

Q? 1 =, 1 N
LR 1GR3 [(C_? —k2)Fs + (? —k1)Fs +E]

£ = —ays
The closed loop dynamics, after defining ¢ by £ = —ouys, is
seen to be governed by

=2
b= [(5k)» (o) §lo-
—koFy — ky Fy
f = —Qays

which is equivalent to
QZ

)
it ol o)

F) 4 by Fy+ (ky —a

VFs=0

(19)
The system is seen to be rendered asymptotically exponentially
stable for a suitable choice of the design parameters k;, k; and
a. For instance, the choice

=2 2 =2
a= Wuﬁﬂ, ki = % + wZ, + 2€waf,

]
Q@+ 2y

ky = 28wn + B



with ks, .., ko being design constants to be determined later.

Consider the output y5 = &. An integral input-output param-
eterization of the flat output and its time derivatives is readily

obtained as
F; (1 —ev)ys + E(//ua)

B (///uo)—v(/.w)

E = (//UJ)—’YZM
1‘:5(\3) = 1_1(7 [(/w)—v(///uaHvz(/ya)]

(26)

The above structural estimates can be used in the following
GPID controller

ug = vEs + (1 —ey) [— ks F{Y — kyFy — k3 Fy

uw =
—kzﬁ;+5]
¢ = —oytn €0)=0
7 = —Pys, n(0)=0 (27

which yields the following closed loop dynamics for the flat
output:

F® 4 ks F® + kg F6® + (kg — ac)FyY
+(ky — Be)Fs + aFs + pF5s =0

Figure 7 depicts the time responses of the closed loop nonlinear
cart-pole system (22) to a small initial angular deviation. The
system parameters were set to be

M =15Kg, m=03Kg, g=98m/s?,

L=03m J= %mLB

The coefficients for the controller were chosen so that the
closed loop characteristic polynomial for the flat output coin-
cided with: (5% + 26w, s +w?)3. We set: £ = 0.88,w, = 0.80.

4 Conclusions

In this article, we have given an elementary introduction to
GPID control of linear systems. The GPID approach avoids the
need for asymptotic state observers, or time discretizations, in
order to estimate the required state variables in any given state
feedback control scheme. This is valid whether the controller
is based on the flatness of the system or not. The emphasis in
GPID is placed in obtaining “structural”, rather than exac! es-
timates of the states. The structural estimates are given purely
in terms of outputs and iterated integrals of the outputs and of
the inputs. This program is certainly possible for linear sys-
tems which are observable and, hence, constructible. Roughly

speaking, constructibility means, that the state can be expressed
in terms of inputs and outputs and a finite number of their time
derivatives. This fact can be also used, with the help of the state
equations, to effectively obtain an integral input-output param-
eterization of the system states, modulo initial conditions and
iterated integrals of such initial conditions. The effect of the
state estimation errors, due to the open loop nature of the un-
derlying observers, in the closed loop dynamics is then com-
pensated by use of appropriate integral control action based on
iterated integrals of the output error and possibly, the input er-
ror. The approach is rather robust with respect to unmodelled
parameter variations as demonstrated in some of the treated ex-
amples.

Some extensions already exist to the case of nonlinear systems,
(See [8], [9]). The most interesting case of delayed differential
systems is treated by Marquez ef al in [6], from the context
of classical Smith predictors. Nevertheless, systematic design
procedures for nonlinear systems are still the subject of on-
going research.
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