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Abstract: We illustrate the relevance of groups of transformations, which qualify as
symmetries for the controlled dynamics, in the pH regulation problem for a two
species continuously stirred tank reactor (CSTR) system. The existence of a state
space symmetry allows to simplify the control design to regulating just one product
concentration, while evading well known singularities. A similar property is also
established for a set of invariant stabilization errors yielding a different controller

design option. Copyright © 2001 IFAC
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1. INTRODUCTION

Symmetries have played a major role in the develop-
ments of Physics all along the XX century. Symme-
tries are commonly found in areas such as: Classical
and Celestial Mechanics, Relativity Theory, Quan-
tum Mechanics and Chrystalopraphy. Its mathe-
matical machinery is quite mature and has been the
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subject of several authoritative books. We mention
just a few: the books by Olver (1986, 1995) the book
by Marsden (1994) and the book by Bluman and
Kumei (1989). Structural aspects of nonlinear affine
systems, such as sub-system decomposition, were
the object of a rather complete study by Grizzle
and Marcus (1985). The notion of symmetry was
investigated, in the context of linear dynamic sys-
tems, in an article by Fagnani and Willems (1993).
Symmetry has recently found renewed interest in
nonlinear control systems synthesis problems. In the
work of Martin and Rouchon, (1999}, applications of
symmetries were made to clearly explain the direct
and indirect field oriented control methods in in-



duction motors. In a recent book, containing a con-
tributed chapter by Rouchon and Rudolph (1999),
the symmetry-based control techniques were natu-
rally extended to the stabilization, and tracking, of
differentially flat systems. In that chapter two exam-
ples are presented: the trajectory tracking for a non-
holonomic car and the regulation of a two species
constant volume chemical reactor. In this article, we
approach the nonlinear feedback pH regulation of a
Continuously Stirred Tank Reactor (CSTR) system,
studied by McAvoy et al (1972), by examining the
group of symmetries admitted by the normalized
representation of its controlled dynamics. We show
that the CSTR controlled dynamics admits a simple
state symmetry group. The existence of this symme-
try implies the possibility of reducing the control
problem to the stabilization of just one species.
Singularity free stabilizing invariant feedback laws
are found by straightfoward linearization. Invariant
state stabilization errors can also be identified in
terms of diffeomorphic transformations with similar
model reduction properties. A feedback controller
is also proposed for the simultaneous stabilization
of these errors to the origin of coordinates, thus
achieving the desired pH regulation. Simulations
are carried on a typical CSTR. system subject to
control input saturations. The article is organized as
follows: Section 2 describes the CSTR system and
defines the pH regulation problem. In that section,
we also find a convenient normalized model of the
chemical process. The normalized model is easily
shown to admit a symmetry with respect to 180 de-
gree rotations of the state plane, followed by a fixed
translation. We also identify a diffeomorphic trans-
formation, relevant to the system stabilization task,
that qualifies as an equilibrium stabilization error
vector. The two independent errors are shown to
satisfy exactly the same controlled differential equa-
tion, thus simplifying the controller design problem
to a one dimensional problem. Section 3 presents
computer simulations evaluating the performance of
the prescribed feedback controllers. The last section
is devoted to conclusions and suggestions for further
research. A summary of symmetry and invariance is
provided for background purposes. The exposition is
directly taken from Rouchon and Rudolph (1999).

2. AN INVARIANT STABILIZATION
APPROACH TO PH REGULATION IN A CSTR

2.1 A brief introduction to symmetry and invariance

We give here an elementary introduction to the con-
cept of symmetry and invariance. We follow, very

closely, the terse presentation given by Rouchon
and Rudolph (1999) where the reader is referred
for further details. Consider a controlled system of
the form, 7 = f(z,v), with the state, z € M and
dim M = n, and control input, v € R. Let G be a
finite order local group of transformations on M x R,
which takes the variables (z,v) into (w, ), according
to:

wztpy(z), 19=1119(Zav), g € G

We say that the system 2z = f(z,v) admits G as a
local symmetry group if and only if, for each g € G
there exists a regular static feedback ¥ = 9,(z,v)
such that

w= f(w,?)

i.e. the system equations remain invariant under the
transformation, modulo regular static feedback. If
9 = Yy(z,v) = v for all ¢ € G, the system is
said to admit a state space symmetry group. We let,
(z,7), denote the constant equilibrium values of the
system, i.e. f(Z,7) = 0. An invaeriant static state
feedback is a mapping k : M x M x R, defined by

v =k(2,Z,7)

such that for all ¢ € G the following invariance
condition holds:

k(‘pg(z)a ‘PQ(?)H/J(?:F)) = 1/)9(17 k(z)fvﬁ))

An invariant static state feedback is said to be
globally (resp. locally) asymptotically stabilizing at
(z;9), if globally (resp. locally) in M x R, one has
that: (z,v) — (Z,9) ast — oo. A global (resp.
local) invariant state error with respect to the point
(T,7) € M x R is a set of invariants of G

e(z,7,9) = (e1(2,7,9), ... ,€a(2,Z,7))
such that (ej,...,ey) is a local (resp. global) diffeo-
morphism on M and e(z,z,7) =0.

2.2 The reactor dynamics

Figure 1 shows a CSTR system, taken from McAvoy
et ol (1972), where two input feeds are considered:-
The feed F; is the sodium hydroxide, (NaOH),
volumetric feed, considered as the control input,
which is also assumed to exhibit a constant input
concentration Cj, while the second feed, F», is the
constant input flow of acetic acid (HAC) which is



also assumed to have a constant input concentra-
tion, given by Cy. The volume V' of the tank is also
assumed to be constant. A dynamic model for the
pH regulation in the tank is given by the following
set of differential equations:

d
Vaxl =-Fy + U(Cl = 1‘1)

d
Voo =F(Ca — z2) — uz 0]

where z; is the sodium concentration, z; is the
combined concentration of acetic acid and the ac-
etate ion [AC™] concentration. The control input u
is the NaOH volumetric feed. We denote by y the
hydrogen ion, [H*], concentration at the output of
the reactor, which is to be regulated. The pH of the
output product is given by,

pH = —logyo(y) (2

where y is represented by the real solution of the
following algebraic equation,

y* + (Ko + 22)y” + [Kaolzz — 71) —Ku]y
KoKy =0 (3)

with K, and K, being known constants represent-
ing, respectively, the acetic acid equilibrium con-
stant and the water equilibrium constant, respec-
tively.

2.3 Problem formulation

Suppose it is desired to regulate the pH towards a
desired equilibrium value, given by, pH. The system
equations (1) reveal that the equilibria for z; and
74, denoted by T; and T, are related by:

C';T] + lez = C] C‘Z (4)

From the output equations (2), (3) and the equi-
librium relation (4), it follows that it is possible to
parameterize the equilibria for ,; and zs, solely in
terms of 7 = 107PH as follows,
T2 = %(C! —T)
- _ (17+ V Kw)(!T_ VKw)(i‘l' I(o) —KJCH
Y[y+ K. (1 +C1/C2)]

(5)

The pH regulation problem is, therefore, equivalent
to the stabilization of (z;,z2) towards its desired

equilibrium value (Z;,%;), computed in accordance
with (5). For this reason, from now on, we concen-
trate on the state regulation task.

2.4 Normalization of the reactor state dynamics

The following state, input, and time scaling trans-
formation,

29==, V=7 T = F—Zf
o Pt ey TR A\V)

yields the following, appealing, normalized represen-
tation of the pH regulation process dynamics,

Z1=—z +u(l —2z)
22=(1—22)—U22 (G)

where now the “dot " notation, abusively, stands
for derivation with respect to the scaled time 7. For
constant, positive, values of the normalized input,
v = v, the state of the system has the following,
strictly positive, control parameterized equilibria,

1

Z = Ty=——, = 1+ =1
1 17 2T 1xw 1 2

<

—

It can be shown, with very little effort, that the state
variables z; and zy constitute, each one of them,
minimum phase outputs. This fact is quite helpful
since controlling one of these “outputs” towards a
desired constant equilibrium point, automatically
makes the system regulate the second state variable
towards its own equilibrium point. Indeed, suppose
z) = 7) is constant, the zero dynamics, correspond-
ing to the output 2;, is given by

. 1 -
22 =—<ﬁ> (22—1+21)

=— <%> (22 —1 +7)

whose trajectories are asymptotically stable towards

Z2 = 1 —Z;. A similar procedure shows that z; is

also a minimum phase output.

2.5 A symmetry for the normalized system

The search for a symmetry can be approached just
by considering its definition. We have to find a Lie
group of transformations, w = @(z) = (¥1,¥2), of
the state coordinates z = (z1, z2), such that, modulo
regular state feedback (i.e. state dependent input



coordinate transformation), the system equations
remain exactly the same as before, but now, in
terms of the transformed state and input variables.
It turns out that, in this particular case, the system
admits a state space symmetry We, thus, obtain, for
@, the following set of partial differential equations:

d¢p1 3<P1_
—216—21+(1—22)£——¢1
o O
(1—21)6—“01—226_(5:=1— 1
O Opa _
~Hg,, +(1— 2)@—1— 2
3] a
(1-2) 52 -2 272 = W)

We readily obtain, by straightforward inspection,
that a possible solution of the system (7), is given by
the following simple diffeomorphic state coordinate
transformation,

pr=w1=1—2, @w=w=1-2z (8)
It is straightforward to verify that this non singular
transformation leaves the controlled system equa-
tions (6) invariant, without any need for further
feedback. The transformed differential equations,
written in terms of the new variables, w; and ws,
are, thus, given by

Wy =—wy +v(1 —w)

(;12 = (1 —&Jz) — VWy (9)

The existence of the symmetry (8) readily reveals
that the pH feedback regulation problem can be im-
mediately reduced to control just one dynamic equa-
tion. Indeed, consider the diffeomorphism (which is
not. a symmetry) given by,

’1271=1—.227 wy =21, — W =T

we obtain,

W= —tn +‘U(1—W|)
Wy = —wy +v(l — wy) (10)

which are identical controlled differential equations,
possibly starting from different initial conditions but
having the same equilibrium. Thus, given a desired
equilibrium 2, = Zy = W, a simple linearizing
controller, such as,

21 —K(Zl —71)

v = wz—K(‘wZ—ﬁz) _
1—21

I—WQ

with K > 0, asymptotically exponentially stabilizes
21 = 71, and z3 = 1 —Z; =7Z,. With respect to the
symmetry (8), the linearizing feedbacks,

v )
v=ky(2,7) = 122t f(” ~%2)
2

satisfy the invariance property k:(w,w) = ki(2,%).
Evidently they constitute local invariant asymptot-
ically stabilizing feedbacks at (z1,7%2).

2.6 Invariant stabilization errors

Consider the following invariant error vector e(z,%),
locally defined in (0,1) x (0,1) C R?, as
_ 1-2 -

g =——V, €=
z2 1—21

21

-7 (1)

They evidently constitute a local diffeomorphic
transformation of the state space of coordinates,
z = (21, 27) which satisfles: 1) e(w,@) = e(z,%), 2)
e(z,Z) = 0 and 3) it takes the normalized system
(6) to

é1=—(e; +7) — (ex +7)2 +v(l+e +7)
é2=—(e2 +7) — (e2 +7)* + v(1 + ez +7) (12)

i.e., both errors satisfy exactly the same controlled
differential equation and the feedback regulation
problem reduces to control just one of these errors
to zero. Notice that if, for any K > 0, we specify
the following feedback controller,

Kev i ote (13)

V= ———
l1+e1+7v

one obtains an asymptotically stable error dynamics
regulated by é; = —Ke;. The same feedback,
written in terms of e,, yields é; = —Ke,.

2.7 A remark on the flatness of the normalized
system

The system exhibits a flat output (see the article by
Fliess et al, 1995) given by the following quantity:

22
1 —21’

whose equilibrium value is readily found to be, R =
1. It is easy to see that all the normalized system



state variables and the normalized control input can
all be differentially parameterized in terms of the
flat output, R.

, _1-R-R o RR U__I_E
== 1—-R ) 2—1_R7 - R

The parameterization is clearly singular around the
constant equilibrium points of the system. Any con-
troller directly designed on the basis of the differen-
tial flatness of the system, will have to resolve these
singularities by ad hoc techniques. The controllers
designed above do not exhibit, any of these singular-
ities.

3. SIMULATION RESULTS

Simulations were performed on a CSTR system with
the following parameters:

V = 1000 [It], F> = 515 [it/min],
Ci = 0.3178 [mol/lt], Cy =0.0 5 [mol/1t],
K,=10"", K,=18x107%

It was desired to regulate the pH, from an arbitrary
initial value towards the value of 9, i.e.

pH=9 = y=10"

The prescribed control objective implied that. the
equilibrium values for the original state variables,
Ty, Iz, are given by:

Z; = 0.0432 [mol/lt], T, = 0.0432 [mol/lt]
with the corresponding equilibrium value for the
control input u given by

% = 81 [It/min]

In order to give a realistic feature to the control
scheme, we implemented a controller which could
only take positive values in the closed interval, u €
[0, 150] [it/min]. Figure 2 depicts the performance
of the feedback controller given by equation (2.5).
The concentrations of the original state variables
z; and z, are shown to converge towards their com-
mon desired equilibrium value. The control input
is initially saturated at the lower bound. In spite
of the lack of feedback during the initial stage, the
controller stabilizes the system towards the desired
equilibrium. Figure 3 depicts the performance of
the feedback controller given by equation (13). The

concentrations of the original state variables z; and
zy are shown to also converge towards their com-
mon desired equilibrium value. The control input is
initially saturated at the upper bound.

4. CONCLUSIONS

In this article we have provided and instance of
application of symmetry groups for the simplifica-
tion of a nonlinear control problem. The treated
example corresponded. to the pH control of a two
species CSTR system. The normalized model of the
system was shown to exhibit a state space sym-
metry which immediately revealed the redundancy
of the state model for feedback controller design
purposes. A local diffeomorphism, which is relevant
to the equilibrium stabilization problem, was shown
to exhibit the same model simplifying properties
encountered by symmetry considerations. Any of
the components of the diffeornorphism qualifies also
as an invariant error for the non-redundant system.
The derived controllers performed rather well in
spite of realistic saturation limits that were imposed
on the control input implementation. The notion of
symmetry seems to have direct relevance in sliding
mode control, Lyapunov stability theory and other
controller design methodologies. These topics de-
serve attention for further research.
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Fig. 1. Continuously Stirred Tank Reactor System.
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Fig. 2. Control and state responses of CSTR system,
linearizing control.
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Fig. 3. Control and state responses of CSTR system,
invariant error control.



