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Abstract. In this article we examine, in the context of equilibrium-to-equilibrium
reference trajectory tracking, the Generalized Proportional Integral Derivative (GPID)
control of a nonlinear average model of a DC-to-DC power converter of the “Boost”
type. The design approach relies on the converter’s tangent linearization model and
Lyapunov stability theory. The performance of the feedback controlled nonlinear
system is evaluated by means of digital computer simulations including large, un-
modelled, load parameter variations.

1 Introduction

Generalized Proportional-Integral-Derivative (GPID) control was introduced
by Prof. M. Fliess and his coworkers (See [2] and [3]) in the context of lin-
ear time-invariant controllable systems. GPID control sidesteps the need for
the traditional asymptotic state observers and directly proceeds to use, in a
previously designed state feedback control law, structural state estimates in
place of the actual state variables. These structural estimates are based on
integral reconstructors requiring only inputs, outputs, and iterated integrals
of such available signals. The effect of the neglected initial states is suitably
compensated by means of a sufficiently large number of additional iterated
integral output error, or integral input error, control actions. The method
has enormous interest from a theoretical viewpoint and ties in with the al-
gebraic module theoretic approach to linear systems (see Fliess [1]) and the
theory of algebraic localizations (see also Fliess et al ([4]) ). GPID control can
be extended to linear delay systems and it has been extended to particular
instances of nonlinear systems in Sira-Ramirez et al ([11]).

In this article, we present a study of the relevance of the GPID control
for the trajectory tracking in an average nonlinear model of a DC-to-DC
power converter of the “Boost” type. Our developments are cast in the con-
text of linearized average models around nominal state reference trajecto-
ries accomplishing a desired equilibrium-to-equilibrium transfer. In order to
demonstrate the flexibility of the GPID controller implementation approach
in accomodating for several state feedback controller design techniques, we
use a Lyapunov-based controllers in the state feedback controller design. The
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performance of the GPID feedback controlled system is evaluated by means
of digital computer simulations.

Section 2 deals with the generalities of the average nonlinear model of a
Boost converter. We particularly emphasize the flatness of the system and the
minimum and non-minimum phase character of its state variables. Section 3
uses a time-varying linearized model of the boost converter, valid around a
nominal state and input trajectory, off-line specified on the basis of the non-
linear system flatness. The nominal state trajectory is specified to achieve a
typical equilibrium-to-equilibrium transfer taking place in finite time. We im-
plement, via the GPID approach a Lyapunov-based state feedback controller
achieving asymptotic stability to zero of the state tracking error. We illus-
trate the robust performance of the designed GPID controllers by means of
computer simulations including large unmodelled load parameter variations.

2 An Average model of a Boost Converter

Consider the boost converter circuit, shown in Figure 1. The system is de-
scribed by the set of equations

LI =—-w+E
v
) = I——
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where I represents the inductor current and v is the output capacitor voltage.
The control input u, representing the switch position function, is a discrete-
valued signal taking values in the set {0,1}. The system parameters are con-
stituted by: L, which is the inductance of the input circuit; C the capacitance
of the output filter and R, the output load resistance. The external voltage
souree has the constant value F.

We introduce the following state normalization and time scale transfor-
mation:

a;—I\/z Ty = — r——f_ 2)
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The normalized model is thus given by:

i’] = —uxy + 1
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where now, with an abuse of notation, the “*” represents derivation with

respect to the normalized time, 7. The variable z, is the normalized inductor
current, zo is the normalized output voltage and u, still represents the switch
position function. The constant system parameters are all comprised now in
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the circuit “quality” parameter, denoted by @@ and given by the strictly posi-
tive quantity, R1/C/L. It is assumed that the only system variable available
for measurement is the output capacitor voltage z,.

The average state model of the boost converter circuit, extensively used in
the literature, may be directly obtained from the model (3) by simply identi-
fying the switch position function « with the duty ratio function, denoted by
1+, which is now a function restricted to take values in the closed interval [0, 1]
The average normalized inductor current and capacitor voltage are denoted,
respectively by 2z; and z;. We thus deal, from now on, with the following
average normalized system equations which admit a physical interpretation,
in terms of controlled voltage and current sources:

2 = —u22+1
2o = pz 2
2 = B2 — —
Q
Y=z (4)

2.1 Properties of the average normalized model

The average system (4) is differentially flat, with flat output given by the
total normalized stored energy

1
Indeed, all system variables can be parameterized, modulo physical consid-
erations, in terms of the flat output F and its first order time derivative
F.

1 = —%'F%\/QQ +4(QF+2F)
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An important property of the average model concerns the nature of the
zero dynamics associated with the individual normalized average state vari-
ables. The variable z; is a non-minimum phase output while the variable 2; is
a minimum phase output (See Sira-Ramirez and Lischinsky-Arenas [9]). For
this reason, in order to avoid internal instability problems, the feedback reg-
ulation of the average voltage, 29, is usually carried out in an indirect fashion
in terms of a corresponding regulation of z;. It is also clear, from the strictly
positive character of the flat output, F', and the assumption that, pointwise,
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F(t) > —(2/Q)F(t), the average state and the average input variables are all
strictly positive signals.

Henceforth, we concentrate in solving the stabilization and trajectory
tracking problems for the described average normalized model of the Boost
converter circuit. It is implied that a feedback solution of the average problem
can be readily implemented, modulo some well-known approximation errors,
on the actual switched system (1) by means of a suitable high frequency
Pulse-Width-Modulated (PWM) feedback control scheme (see {8] and [10]).

3 GPID Regulation around a Nominal Trajectory

Suppose it is desired to achieve an equilibrium to equilibrium transfer for the
non-minimum phase variable z5, within a given finite interval of time [tg, ¢1].

This problem is suitably transformed into a problem of adequately con-
trolling the total stored energy F between the two corresponding equilibrium
values. For this, note that if it is required to transfer the normalized capac-
itor voltage between the constant equilibrium values, Z(¢p) and Z2(t;), the
corresponding equilibrium values for the flat output, F(to), F(t1), are given,
according to (6), by

. 2
F(to) = 1 <—Z%(t0)) + lZﬂ(to)

2\ Q 272
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Thus, a nominal flat output trajectory F*(t) can be prescribed which
smoothly and monotonically interpolates between the equilibrium values,
F(to), and F(t1). Note that this ofl-line planned prescription of the flat out-
put, immediately renders, via use of (6) the nominal (open loop) normalized
state and control input trajectories, z{ (), z5(t), px(t), without integrating
any differential equations.

3.1 A time-varying linearized model around the nominal
stabilizing trajectory

The jacobian linearization around the prescribed nominal stabilizing trajec-
tory, characterized by the functions 2} (t), 25(t) and p*(t), is readily obtained
to be

215 = —p* (t)zas — 23 (t)pss
. * * 1
o5 = W (t)z1s + 27 (t)ps — 6226

Yo = 226 (8)
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This linear time-varying system is written in matrix form: z; = A(t)zs +
b(t)ps, ys = c(t)zs, as

d [z [ 0 —u*(t)] zl.s] [—z;(t)]

A = * + * 9
dt [225} pr) -5 | |20 Z(t) | M ©)
The linearized system is uniformly controllable for all physically feasible

trajectories ( 27 (t) > 0,25(t) > 0 ). The controllability matrix is computed,
according to the formula developed by Silverman and Meadows [7],

e = 00— oo = [T

(10)

The system loses controllability around the conditions: z3(t) = 0 and
z(t) = ——g, which are not physically significant. The system is thus uni-
formly controllable in the region of the state space of interest. Hence, the
system is differentially flat, with flat output given by a time-varying linear
combination of the state variables. In this case, such a flat output is given

by:
Fs = 21 (t)z15 + 25(t) 225 (11)

which represents the incremental normalized energy around its nominal value:
F*(t) = (1/2)([ 2 (£) ]* +[23(t)]?). The flat output time derivative represents
the incremental consumed power and it is given by

ZZQQ (?) o8 (12)

Indeed, all the incremental system variables are differentially parameterizable
in terms of Fy and its time derivatives,

Fs =215 —

1
215 = m [—F5+F6]
1 o
225 = z;(t) (1 + %Z;(t)) [F5 —zl(t)FJ]
o a qa
o= z; >(t) (1 + azx (t)) 1QZ2 O t)ers

+ [#*(t) (1 + %zr(t)) ;2 % (t)] 225 + Fﬁ}
1 4 1 2 4
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+ [%zﬁp‘ - (p* (1+%z?) oLk ) ] Fy +F5} (13)
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The linearized system, (9), is also uniformly observable from the output
ys since, according to the Silverman-Meadows test [7], we obtain the following
observability matrix:

o =[e7s u-grer] = [ 149 (149

and the system is seen to loose observability whenever the nominal duty
ratio function satisfies u*(¢) = 0. It is clear, then, that the linearized system
(9) is constructible and the unmeasured state can be expressed in terms of
integrals of linear time-varying combinations of the incremental input ps and
the incremental output ys. Indeed, from the linearized system equations (8)
we have,

i
0= / [ (@)us(0) + 23 (o) (0)]dor
225(t) = ys(t) (15)

The relation linking the structural estimate of the incremental normalized
inductor current, z15, with its actual value, 214, is given by

215 =216 +215(0) (16)

Similarly, the relations between the structural estimates of the incremental
flat output and of its first order time derivative, and their actual values are
given, according to (11), (12), by,

Fs = Fs + 21 (t)215(0)
F& = F6 +2’15(0) (17)

3.2 A Lyapunov based controller

Consider the time-invariant Lyapunov function candidate, V (215, 225) given
by.

1
V (216, 225) = 3 [235 + 23]

The time derivative of the Lyapunov function, along the trajectories of
the linearized system yield

2
z * *

V(216, 226, ,) = — é—" + (2] (t)228 — 23(8)216) s (18)

The time-varying controller

ps ==y (21 (t)225 — 22 (t) 214) (19)
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with v > 0, results in a negative definite time derivative of V' (214, 225) along
the closed-loop controlled trajectories of the system,

2
V (216, 226, ) = —%" — (2} (8)225 — 23 (t)226)° (20)

The closed loop system (8}, (19) is then an exponentially asymptotically
stable linear time-varying system for any strictly positive design parameter
v. 4

Use of the structural estimate for 2,5, given by (15), in the Lyapunov based
controller, (19) leads, after appropriate integral output error compensation,

to the equivalent closed-loop incremental system:
215 = =23 (O 215 — (W7 (8) — v (£)25 (1)) 226 + ¥{25 (£))* (2106 — kCs)
ias = 1 (0)+ 15 073015 — (G + 21210 s
o+ ()23(6) (2105 — RGs)
(s = 225 (21)

Letting ps = (2106 — k(s), we obtain the following matrix representation
of the closed loop system:

215 —l=: (1)) —[u* () = v21 ()25 ()] les ())° 215
2z | = | W@ +r20B20)] —(F +A @) v @) (t) ] lzza]
ps 0 —k 0 ps

(22)

dt

The point-wise eigenvalues of the closed loop system, (22), are guaranteed
to be bounded away from the imaginary axis, in the open left portion of the
complex plane, provided the constant gain k is chosen to satisfy the rather
conservative, but feasible, condition:

S
Q723 max(t)

It is relatively straightforward then to show that the closed loop system,
(22), satisfies the hypothesis in the following Theorem due to Rugh [6]. This,
as usual, entitles a sufficiently slow and sufficiently differentiable nominal
equilibrium to equilibrium transfer trajectory for the flat output. The closed
loop system, (22), is then seen to be exponentially asymptotically stable.

0<k<

Theorem 1. (Rugh [pp. 135-138]).

Suppose that for the linear time-varying system & = A(t)z, the matriz
A(t) is continuously differentiable and there exist finite positive constants a
and 0, such that, for all t, ||A(t)]] < a, and every pointwise eigenvalue of
A(t) satisfies Re[A(t)] < —6. Then, there ezist a positive constant 8 such that
if the time derivative of A(t) satisfies ||A(t)|| < B, for all t, the state equation
13 uniformly exponentially stable.
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4 Conclusions and Suggestions for Further Research

In this article, we have presented a GPID control scheme for stabilizing tra-
Jjectory tracking tasks in an average nonlinear model of a DC-to-DC power
converter of the “Boost” type. Eventhough the presented developments are
cast in the context of linearized time-varying average models, the ideas can
be extended to the full nonlinear case. The flexibility of the GPID controller
approach to accommodate to any linear state feedback controller design tech-
nique, has been illustrated by using Lyapunov-based controllers. The perfor-
mance of the GPID feedback controlled systems was evaluated by means of
digital computer simulations with highly satisfactory results.
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Fig. 1. The boost converter circuit
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Fig. 2. Generalized PID controlled responses around an equilibrium to equilibrium
transfer trajectory
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Fig. 3. Generalized time-varying PID controlled responses to an unmodelled, and

permanent, load change



