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Abstract. In this article we show that the n-dimensional state of an observable
discrete-time nonlinear SISO system can always be exactly synthesized by means
of a “structural reconstructor” which only requires knowledge of a finite number of
delayed inputs and delayed outputs. This fact, when combined with the difference
flatness of the system, results in an effective systematic feedback control scheme
which avoids the need for traditional asymptotic state observers.

1 Introduction

Availability of the state vector in the synthesis of model-based designed feed-
back control laws is a crucial assumption, or requirement, needed in achiev-
ing the desired closed loop behavior of a given dynamic system. The lack
of knowledge of the state vector, due to the necessarily limited character
of measurements on the system variables, may sometimes be replaced by
the use of a complementary dynamic system, called an asymptotic state ob-
server, whose state trajectories are guaranteed to converge towards those of
the original plant, irrespectively of its arbitrary initial state values. The lit-
erature on asymptotic state observers for linear and nonlinear systems, of
continuous or discrete-time nature, is vast and certainly out of the scope of
this article for a fair review. Nevertheless, for the interested reader, we briefly
mention some important contributions made in the past, all in the realm of
discrete-time nonlinear systems (DTNLS), which are relevant to the problem
of observer design, observability and feedback control of this important class
of systems. The work of Grizzle (3], Jakubczyk and Sontag {4] and Monaco
and Normad-Cyrot [5] and Fliess {1], all deal with fundamental aspects of
the description of DTNLS and the relevance of particular analysis tools. The
work of Aranda-Bricaire et al [6] devotes special attention to the problem of
feedback linearizability of DTNLS, which we also use in the control aspects
related to this work. The reader is also referred to the book recently edited by
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Nijmeijer and Fossen for a glimpse of the current state of the art in nonlinear
systems observer design (see [7]).

In this article, we present an approach, based on exact state reconstruc-
tors, to the problem of controlling constructible DTNLS. State reconstructors
are based on accurate knowledge of only past inputs and outputs. This fact,
which is the outcome of the difference algebra approach to the study of ob-
servability in nonlinear discrete time systems, was advocated in the work of
M. Fliess (see Fliess [2]) thirteen years ago. In that work, exact state recon-
struction is recognized as an algebraic elimination problem. Somehow, this
idea never led, to our knowledge, to the development of particular application
examples dealing with control systems design.

We emphasize that the exact state reconstruction approach is fundamen-
tally different from the traditional asymptotic observer approach in the sense
that an ezact, either immediate or “dead-beat”, recovery of the true state
trajectories is always guaranteed under the assumption of constructibility of
the system, a weaker condition than that of observability. The state recon-
struction, in an n dimensional discrete-time nonlinear system, is ezact from
the initial time on provided a finite string, of length n—1, of past values of the
applied inputs and the corresponding outputs are remembered, or stored. If
such a delayed input and output information is not yet available at the initial
time, the exact state reconstruction still takes place at the end of the next
n—1 steps, provided the applied inputs and corresponding outputs are stored
from this initial time onwards. The exact reconstruction is then independent
of the initialization values arbitrarily assigned to the unavailable past inputs
and past outputs in the reconstructor expression. In the latter case, the con-
vergence of the reconstructor is, of course, also independent of any design
gains or of a particularly desired asymptotic estimation error dynamics.

Section 2 establishes the main result of the article, which basically proves,
throiigh elementary considerations, that an observable nonlinear discrete-
time system is also constructible. Section 3 is devoted to present a controller
design example for the non-holonomic car model. The system presented is
exactly discretized, from the original continuous-time version, and an ap-
proximate feedback linearizable version of the system model is adopted for
dynamic feedback controller design purposes. The feedback performance re-
sults, tested on the full model, are illustrated by means of digital computer
simulations. Section 4 presents the conclusions and suggests some topics for
further research.

2 State Reconstruction in Nonlinear Observable
Systems

Consider the following n-dimensional MIMO nonlinear system with k €
{0,1,2,..},

Tp41 = f(a:k,uk), Tr € Rn, ug € R™
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vk = h(zx), yr € RP (1)

We concentrate, for simplicity sake, on the local analysis. A global analysis
can be achieved with additional technical assumptions. Note that the com-
putations based on this analysis provide, for the nonlinear example in next
section, almost global reconstruction formulae.

2.1 Basic assumptions

1. We assume that the strings of applied inputs and obtained outputs, prior
to k = 0, are known from the time 1 — n on. In other words, y; and ug,
for 1 — n < k <0 are known.

2. The system is assumed to lie around an equilibrium point (z.,ue,¥e),
i'e'v Ze = f(xE)uc)ryE = h(me)'

3. The system (1) is assumed to be locally observeble around the constant
operating point (., u.,Ye). This means that the Jacobian matrix

O{Yks Ykt 15 yk+(n—l)}
5%, (2)

evaluated at the constant operating point (z.,u.) is full column rank n.

2.2 Notation

We use the delay operator ¢ to express the fact that d¢x = ¢r—1, and,
correspondingly, the advance operator is denoted by §~1. The expression,
S4 ¢y, for any positive u, stands for the identity 6#¢x = ¢x_, and, sim-
ilarly, 6 ®¢r = ¢ry.. The underlined symbol 4, as in, 6¢x, stands for
the collection: {@r—1, Pk—2, -, Pk—p}, i-6. 8*dx = {I¢x, ..., 6* ¢ }. Evidently,
80 = 8% = Id and 8! = 4. On the other hand, § "¢, stands for the collection,

{Dk, Det1sr Brtn} = {Ph, 6 by oy O}
Note that the system equation (1) is equivalent to:

zr = 6 f (zk, uk) = f(0zk,0ur) = flzr_1,ur1)
Since, in turn, one may write:
Th-1= f(Th—2,up—2) = f(6zh_1,0up 1) = f(8%zx, 6 up)

it is clear that zx = f(f(6%xk,d%uk), fug). We denote this last quantity by
F®(8%zy, 8%uy). The expression f®) (645, 8%uy), for > 0, should be clear
from the recursion:

f(t) (6ixk7éiuk) = f(f(i_l)((si_lzkv éi_luk))auk)
FO (6xx,0ur) = f(dz, oux) (3)

The operators & and § satisfy the following relation

807 by ={odx,0 b1} (4)
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Similar expressions may be defined for the advances of states.

Terr = 6 'z = flzn,ur) = fH (2, 8 uy)
Trez = 6223 = F(f(Th, ur) upr1) = fP(zrd " up)
k13 = F(FP (@e6 un), ukrz) = £ (zh, 0 2ux)

Thpi = f(zx, 07 Vuy) (5)
We set

FOzrd up) = 2%

2.3 An exact delayed input output state reconstructor
Using the system state equation in (1) in an iterative fashion, one finds:

Ty = 6f(xk,uk) = f(éa:k,éuk)
Ty = f((s(f(ézkv 6”’&:))’ 6"”5) = f(f(ézwk) 62“’:)1 Juk)
= fO)(8zx, 6%up)

zy = FODER g, 0" ) (6)

The elements in a finite sequence of advances of the output signal, y, are
found to be given by

vk = h(zx) = h(FP (zed " ur))
Vi1 = 6 h(zk) = R(6 7 zx) = h(f(zx, ux))
= (ho fU!)(zx, %)
Yrrz = 6 (ho f(zk,ur)) = h(6™" fzk, ur))
= h(f(f(zk, ux),6 ' uz))
(ho f®)(zk, 8 us)

Yrt(n—1) = (ho f["_l])(xhé_("_z)uk)

In the following proposition we show that a locally observable system is
always locally constructible. The converse is not necessarily true.

Proposition 1. Under assumptions 1, 2 and 3, the system is locally con-
structible, i.e. there ezists, locally around (z.,u.,y.), & map ¢ (not neces-
sarily unique) such that the state z), of the system can be exactly ezpressed
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in terms of the output and a finite string of previously applied inputs and
obtained outputs, in the form:

T = So(ykvyk—la""yk—(n—l)’uk—l,""uk—(n—l))a k>0 (7)

provided the string of inputs and outputs {yx,ux} for -n +1 < k < 0 is
completely known.

Proof

According to the constant rank theorem and the stated hypothesis, it
follows that there exists a mapping & such that the solution zx of the np
equations

Yk h(zx)
Yr+1 (h°f[1])(mk,§0uk)
: = : (8)
Yk+(n—1) (ho fIr=1)(zy, 6" 2uy)
can be expressed via a function ¢ (not necessarily unique) as follows:
op = B Dy, 67Dy, (9)

This just consists of an extraction of n equations having a full rank Jacobian
versus z. Such extraction is not unique and thus & is also non unique.
If we take n — 1 delays in this expression we clearly obtain:

6n_1$k — @(5n—lél—nyk, (5n_lé2_nuk)
=¢(yk:én_lykaén_luk) (10)
Using (10) in the last expression of equation (6) we have:

Tk :f(n—l)(é-n—lzhén—luk)
— f(n_l)(Q(Qn_lyk,én_luk),(in_luk)
= (Y, 8" "k, 0" " uk) (11)

The result follows.

g

The previous proposition allows for an exact local “delayed input-output
parameterization” of the state vector at time k for locally observable systems.
Examples below show that, following the same line of development, such
“delayed input-output parameterization” can be almost global in practice.
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3 The non-holonomic car system

Consider the following (kinematic) model of the non-holonomic car system

% = vcosh
y = vsinf
f = %tangp (12)

where v is the forward velocity, acting as a control input and ¢ is the control
input representing the angular direction of the front wheels with respect to
the main axis of the car. The angle, §, is the orientation angle with respect
to the z-axis. The quantities = and y are the position coordinates of the rear
axis of the car, which are the only measurable outputs. The parameter L is
the length between the front and rear axes of the car. We define the auxiliary
input w as w = (v/L) tan .
Defining the complex variable, 2 = z + jy, we obtain

z = vexp(j6)
b=w
n==z (13)

where 1 denotes the measurable position outputs.

An exact discretization of the complex system (13) follows by considering
constant control inputs 7 and @ in an arbitrary time interval [to, t], and then
proceeding to integrate the resulting differential equations. We obtain:

jwel — 1
Zky1 = zp + ok T (M> exp jby
JwT
Opt1 = O + wi T
T = 2k (14)
where 2z = z(tx), 8x = 0(tx), and vx = v(t) = U, w(ty) = wx = W and

T=tgy1 — e
System (14) is observable for v; # 0. Following the procedure outlined in
the proof of Proposition 1, we first rewrite the system dynamics as

expjwr— T —1
JwrkaT
O =6x—1 + wpT (15)

Zr = Rg— + ’Uk_l( ) exp j0r—1

The state of the system in terms of advances of the inputs and the outputs
is given by
2k = Nk
. o
O = arg(nesr —m) — arg (exp(jurT) = 1) +3
(16)
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Combining equations (15) and (16), we obtain an exact delayed input-
output parameterization of the state of the discretized system (14) in the
following terms

2k =T

O = arg(m, — mx—1) — arg(exp(jwxT) —1) + % +wp T (17)

The exact delayed reconstructor (17) will be used for feedback purposes.

3.1 TFeedback controller design based on approximate flatness

As the continuous time system (13) is differentially flat, its exact discretiza-
tion (14) is difference flat, but with a very different and not easy to use flat
output. In order to obtain a suitable, and simpler, controller for the system,
we proceed to approximate the exactly discretized system (14) by a more use-
ful difference flat system. This is achieved by assuming wiT to be sufficiently
small, thus yielding the approximation, expjwT ~ 1+ jwiT. We obtain
the following system, which entirely coincides with the Euler discretization
of system (13),

2yt = 2k + T exp jbi
Oxg1 = Ok +wiT
Mk = 2k (18)
The system (18) is also observable for vx # 0 and evidently difference
flat, with flat outputs given by by the measurable outputs zx. We can thus

express all system variables in terms of the complex output 2z and some of its
advances.

1
Uk:flzk+l—zk|

O = arg(zp1 — k)
1
wi = 7 [arg(2kte — 2hn1) = arg(zita — 2)]
(19)

The expressions in (19) are useful in obtaining a feedback controller. Note
that in order to have an invertible relation between the largest advance of the
complex flat output z and the control inputs, we must introduce an extension
to the system input vk, by defining it as an auxiliary state, ¢, and proceed to
consider the following (complex) dynamic input coordinate transformation:

vy = &k

£ —1| Zg1 |
= —=|ux —

k1 = o LUk = 2en

1
we =7 [arg(ux — zk-11) — arg(zets — 2x)]
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with u; being a new complex control input.

The transformed system is seen to be equivalent to the following linear
system

Zkt2 = Uk (20)

The specification of a prescribed trajectory for the position variables as
2; yields the following auxiliary controller:

up = Zgyp — K1 (2e1 — 2541) — k22 — 2)

= Zpo — k1 (zx + Térexp O — 2p41) — kalzx — zx)

(21)
The dynamic feedback controller is then obtained as
vk = &k
i1 = 1| 2haa = Raloh = ) — 2
—(1+ k1) (2x + Tk exp 6k — 2541) |
Wy = %{arg [z,’é_,_2 — ka(zx — 23) — 24y
~(1+ k) (zk + T€k exp j6k — 2i41)] — 61}
(22)

For the implementation of the designed dynamic feedback controller (22)
on the exactly discretized system (14}, we use the previously obtained state
reconstructor (17). Knowledge of the car position at time k¥ = 0, and the
applied control inputs at time k = —1 results in a dynamic feedback controller
capable of satisfactorily tracking the prescribed trajectory.

3.2 Simulation Results

We prescribe a 3-leaved rose as a desired trajectory in the (z,y) plane. This
function is described in polar coordinates as:

p = acos(m1) (23)

where a is the radius of the circle in which the rose is inscribed and ¢, the
angle of a representative point of the rose in the plane (z,y). The integer
m represents the number of “leaves” of the rose. We set the time parame-
terization of the angle ¥ as a linear growing function of time of the form:
¥(t) =p + q(t — to), with p and ¢ being suitable constant parameters.
Figures 1 and 2 show the performance of the approximate flatness-based
dynamic feedback controller implemented on the exactly discretized system
(14). The exact state reconstructor (17) was used, in the controller imple-
mentation, providing it with precise knowledge of the prior values of the
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inputs and the outputs. The controller gains were set to be ky = —1.3 and
ko = 0.5825. This choice of gains placed the roots of the closed loop char-
acteristic polynomial of the linearized tracking error system at the values
z = 0.65 £+ 0.45. The sampling time was set to T = 0.4. For generating the
3-leaved rose figure, the values a = 10, m = 3, p = 7/2, ¢ = 0.05 were used.
In order to test the controller performance, we set the initial position values
To, Yo far away from the origin, at the values zo = 14, yo = 3, with an initial
orientation of the car given by the angle 27 [rad].

4 Conclusions

In this article we have presented an approach to the problem of controlling
a nonlinear discrete time system without measurements of all the compo-
nents of the state vector. The approach is based on using an exact state
reconstructor which requires only knowledge of inputs, outputs and a finite
string of delayed applied inputs and obtained outputs. We have tested the
“observer-less” control scheme in connection with flatness based controllers
for a typical nonlinear system: a discretized non-holonomic multivariable car.
The performance of the proposed feedback controller scheme, based on the
exact delayed resconstructor, was shown to be good and with quite natural
recovery features, specially in those cases where knowledge of applied inputs
and corresponding obtained outputs, prior to the initial instant of time, was
not allowed and the reconstructor had to be arbitrarily initialized.

An important aspect is that of providing robustness to the proposed exact
reconstructor-based feedback, for the case of external perturbation inputs and
other classes of uncertain influences on the given plant. This will be the topic
of future work.
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Fig. 1. Trajectories of non-holonomic car controlled with a state reconstructor hav-
ing perfect knowledge of inputs and outputs prior to k =0.
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Fig. 2. Performance of controlled car following a “3-leaved rose” trajectory




