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Abstract

In this article, we present a generalized proportional-
integral (GPI) control approach for the regulation, and
trajectory tracking, problems defined on several nonlin-
ear mechanical systems of the manipulator type. In all
cases, the feedback control law can be realized by mea-
suring only a link position. No asymptotic observers,
nor time discretizations, are therefore needed in the
feedback loop for the estimation of angular, or trans-
lational, velocities commonly required in the traditional
state-based feedback controllers for such systems.

Keywords: Generalized PID control, mechanical ma-
nipulator systems.

1 Introduction

One of the main drawbacks of modern control theory is
constituted by the need to completely measure the state
of the system, or to estimate it by means of asymptotic
observers. In practice, one frequently resorts to calcu-
lations based on high frequency samplings of the mea-
sured output signals. Either approach reduces the effec-
tiveness of the preferred feedback control scheme. For
the continuous regulation of linear systems, the need
for state observers, or time discretizations, has been re-
cently elegantly side-stepped (see Fliess et al, [2], Mar-
quez et al [4]) by the introduction of a new technique
called “Generalized PI Control” (GPI). The theoretical
developments of this novel theory have been initially re-
stricted to linear time-invariant systems. The advent
of a nonlinear theory of GPI control has been recently
announced in Fliess [1].
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In this article, we extend the GPI control technique for
the regulation of some nonlinear mechanical manipu-
lators. We show that, in the treated cases, the GPI
control option can be directly used in a rather sys-
tematic fashion. The class of nonlinear systems that
can directly benefit from this control technique seems
to be the class of nonlinear systems admitting nonlin-
ear asymptotic observers with exact linear state recon-
struction errors achieved by nonlinear output injections.
However, the GPI technique is superior to the observer
based controller with regard to non-modeled perturba-
tion inputs and sudden system parameter variations as
already demonstrated in Fliess et al[3].

2 Controlling a single link manipulator

Consider the single link manipulator, shown in Figure
1, described by the second order controlled differential
equation:

ml*8 — mglsind=T (2.1)

where m is the mass of the link, ! is the length of the
link and T is the applied torque. The constant gravity
acceleration is denoted by g.

We first normalize the system equations in order to sim-
plify the presentation. For this, we take a new time scale
T and a normalized control input u, given by

= ( g/l) t,

u=T/mgl (2.2)

The normalized, dimensionless, model is thus given by

0 —sinf=u (2.3)

where, with some abuse of notation, the “ dot ” now
stands for time derivation with respect to the normalized
time scale 7.



A direct exact linearization based feedback controller
design, for accomplishing the tracking of a given desired
angular trajectory: 6*(7), is given by

u= —sin@+6*(1)— ko (6 —0* (1)) — k1 (8 — 6" (7)) (2.4)

Upon appropriate choice of the design parameters ko
and k;, the preceding controller imposes the following
exponentially asymptotically stable closed loop dynam-
ics on the tracking error e =8 —6*(7)

&(7) + koé(7) + kre(r) = 0 (2.5)

The tracking controller (2.4) requires the knowledge of
the angular velocity variable §. This means that such
a variable has to be either measured, or estimated by
means of an observer. In practise, the estimation re-
quires the use of on-line calculations based on high fre-
quency samples of the position variable trajectory (7).
Using generalized PID control, such estimations, or time
discretizations, are unnecessary.

Indeed, suppose that only the link position 8(r) is avail-
able for measurement. Observe, then, that the angular
velocity, 8(7), can be directly computed from (2.3) as

T T

)= [ sno(o)dp + [ uiodo+60)  (26)
where 6(0) is the value of the angular velocity, at time
7= 0. Such information, however, is usually not avail-
able either and we can only assume that this quantity
is known in the simplest of cases (i.e. when it is known
that the link starts with“zero velocity). Therefore, we
assume no knowledge of 6(0).

Suppose, for a moment, that motivated by the simplicity
of (2.6), we insist upon using the following “faulty” es-
timate, or “structural estimate” of the angular velocity,
6(),

o= [ Tpin@e) +u@lde  (27)

Certainly, the estimate (2.7) has the interesting advan-
tage of being easily synthesized using only the integral of
a linear combination of the input and a nonlinear func-
tion of output. Evidently\, the exact relationship linking

the structural estimate 8(r) to the actual value of the
angular velocity, 8(7), is given by

~

6(r) = 6(r) + 6(0) (2.8)

Therefore, if we use (2.7) in the controller expression
(2.4), we obtain the following equivalent feedback law,

i = —sinf +6(r) = ky(B(r) —6*(r)) — kn(0 — 6" (7))

= —sinf +6*(r) - kg(/l: [sin(8(p)) + u(p)]dp
—0*(1) — k1 (6 —6*(7)) (2.9)

When the feedback control law (2.9) is used on the sys-
tem (2.3), one obtains, after use of (2.8), the following
closed loop trajectory tracking error dynamics

8(1) + koé(r) + kre(r) = k26(0) (2.10)
which exhibits an “off-set” tracking error due to a
constant initial condition excitation of the asymptoti-
cally stable tracking error dynamics. This immediately
prompts us to consider the possibility of using a modified
nonlinear feedback controller including an integral error
feedback control term. We thus proceed to propose the
following controller:

u = —sinf+6(r) —k (0 —6*(r)) + ¢
~ka( [ fsin(0() + u(p))dp 6 (r)
£ = ~k(0-6"(r) (211)

Use of the modified controller (2.11) on (2.3) results,
after use of (2.8), in the following closed loop tracking
error system:
. T
0

which is, evidently, equivalent upon differentiation to
the third order linear tracking error dynamics,

e® + kog + k64 koe=0 (2.13)

No doubt, the obtained tracking error dynamics, (2.13),
can be rendered exponentially asymptotically stable by
appropriate choice of the design constants {kz, k1, ko}-

We summarize the previous development in the follow-
ing proposition.

Proposition 2.1 Given a desired engular displacement
trajectory 6*(r) for the nonlinear single link manipula-
tor system (2.3), then the GPI controller (2.11) glob-
ally exponentially asymptotically stabilizes the tracking
error e = 6 — 6*(1) to zero, provided the design gains
{kayk1,ko} are chosen so that the polynomial p(s) in
the complez variable s,

p(s) = 83+ kos® + kis + ko

is Hurwitz.



2.1 Simulation results

Figure 2 shows a block diagram of the GPI feedback
control scheme (2.11) for the trajectory tracking task.
Figure 3 depicts the performance of the proposed feed-
back controller for a manipulator characterized by the
parameters m = 0.5 [Kg], [ = 0.4 [m], g = 9.8 [m/w?].
The control task consisted in maneuvering the link from
the initial position (t;) = m [rad] towards the final po-
sition 8(t;) = —n/2 [rad], in a (non-normalized) time
interval of ¢, —#; = 0.8[¢], with t; = 0.4 [s] and t, = 1.2
[s]- The controller parameters were chosen so that the
closed loop characteristic polynomial for the normalized
system coincided with (s? + 2xwns + w2)(s + B), with
x =0.85, w, = 2, § = 2. The nominal trajectory for the
link position 6*(r) was specified by means of a Bézier
polynomial, smoothly interpolating between the initial
and final values.

0°(r) = 8(n) + (0(r2) +6(m)) I:‘;_—:'l]]u X
T—T1 T—T 8
[Tl B (Tz —T1)+ T (TZ—TI) ]
(2.14)
with

r =252, ry=1050, 7y =1800, ry= 1575,

Ts = 700, Te = 126

3 The gyroscopic pendulum

Consider the gyroscopic pendulum, shown in Figure 4,
which has been extensively treated in the recent litera-
ture about the control of nonlinear mechanical systems
(See Spong et al, [7] and Spong et al [5] ).

A normalized model of such system reads

6, = T [sin 8y — eu]

. 1 .

6, = ﬁ[—sm& + ] (3.1)
where € is a dimensionless quantity and the “*”, stands

for derivation with respect to the normalized time.

3.1 Some analysis based on the flatness of the
system

The normalized gyroscopic pendulum system is differ-
entially flat, with flat output given by the quantity:

F = 01 +€02 (32)

This artificial output has the interpretation of the Huy-
gen’s center of oscillation of the mechanical system and
it completely parameterizes all system variables, includ-
ing the input. Indeed, the system variables can be writ-
ten as differential functions of F as follows:

8, = arcsin(F), 91:\/%
f2 = %[F—arcsin(ﬁ)],
6, = L|lp__F9

€

1—(F)

u = L |:j,'ﬂ_ (1=6) (pu) (1- (i«*)f) +F(p<a))z\]
€ (1= (F)?)3/2 /
(3.3)

The differential parameterization (3.3) allows us to es-

tablish some general properties of the system. From the
first equation in (3.3) it is clear that the pendulum posi-
tion 6, is a non-minimum phase output. Indeed, a con-
stant value of the pendulum angular position 6; = 8, in-
duces a corresponding flat output trajectory which sat-
isfies the unstable dynamics: F' = sin(d,). This means
that F increases linearly. Since 6, is fixed, this, in turn,
implies that the disk position 6, is increasing without
limit. The second equation in (3.3) for §; = 8; im-
plies that F3)(7) = 0. Substituting this value in the
expression for #; we obtain that the angular velocity of
6 is proportional to the flat output time derivative, i.e.
0, = (1/€)F, and, hence 6, = (1/€)[F — 8;]. The nomi-
nal value of the control input u becomes proportional to
the flat output acceleration, u = (1/€)F. The particular
value of interest for 8 is the one corresponding to the
“straight up” position, i.e. §; = 0. This means that the
angular velocity, 02, will become constant and the con-
trol input will be nominally zero at this position. The
unstable behavior of 8 surely causes no problem since
it only means that the disk will be turning at a constant
speed.

3.2 Control objective and off-line trajectory
planning

A control task consists in swinging up the pendulum
from its stable downwards position towards its unstable
straight up position. At time 7 = 7y, the pendulum
is at rest at the downwards stable equilibrium position.
The “swing up” maneuver is to be accomplished during
the interval [y, 7o), with 71 > 79. The desired angular
displacement requires that the angular position starts



at the value 8;(m1) = = [rad], with zero angular veloc-
ity, 61 (m1) = 0 [rad/tu] (tu stands for normalized “time
units”), and it is required to end, after a finite period of
time T, at the value 9]'(71 +T)=6, (Tg) =0 [rad], with
zero angular velocity, 8, (r; + T) = 61 (2) = 0 [rad/tu].
The nominal desired maneuver can therefore be specified
by a time polynomial function, (7,71, 72) of the Bézier
type which “smoothly” interpolates between the initial
and final values for the nominal pendulum link angular
displacement, here denoted by 6; (7). The choice of the
form of the polynomial spline is rather arbitrary. We
specify it as follows

8;(r) = 7 [1 - p(r, 71, 72)] (3.4)

with ¢(r, 71, 72) being a time-polynomial given, for in-
stance, by the Bézier polynomial (2.14) used in Section
2.1.

The disk displacement nominal trajectory, correspond-
ing with the desired angular displacement 8} (7), can be
computed using the flatness property. This task is more
directly accomplished in this manner than by using the
system differential equations. The flat output nominal
trajectory is obtained by direct integration of the fol-
lowing differential equation

F*(r) = sin(q} (7)) (3.5)

The initial conditions for the flat output and its first
time derivative are readily obtained from the definition
of the flat output and the nominal initial conditions for
q; () as, F* (1) = eg;(r and F*(r1) = g (n)+eqs(r1).
We let the disc be initially at rest, prior to time 73, with
g3(m1) =0 and we let g5(m1) to be such that F*(r) is
zero, Summarizing we have
! 1 T

F{n)=0, F'(n)=0, ¢(n)=-=qi(n)=-1

The nominal trajectory for the flat output, F*(r), is
then obtained as:

F*(r) = 0 forall 7 < 1y
(r) = J7 J? sin(6*(\))dXdp forall T >
(3.6)

The nominal trajectory for the variable ¢, is determined
by the relation,

1
() =7 [ (r) = 63 (7)] 3.7
3.3 Feedback controller design

Given the inescapable, and possibly harmless, non-
minimum phase nature of the link position variable, 6y,

we immediately realize that we can proceed to directly
control 8, without resorting to the flatness property,
other than in establishing the nominal trajectories and
the performed analysis. (Incidentally the flatness based
controller exhibits a singularity at any multiple of the
value 6, = w/2). We make no specific regard for the
evolution of @2, other than the reasonable requirement
of having a final constant angular speed, 92, for the ro-
tating disk. This, as already established from the flat-
ness property, is guaranteed only at the upright and the
downwards equilibrium positions.

We consider the following exactly linearizing feedback
controller,
1
u = —sinf;
€
1—¢ o* ) A% *
— =61 = kalby =i () - k(03 - 8 ()]
(3.8)

This controller produces the closed loop tracking error
dynamics
€+kye+ke=0 (3.9)

with e = 8 — 8*(7) being the angular position tracking
error.

In spite of its simplicity, the controller (3.8) requires
the knowledge of the angular velocity 6;, which we have
assumed to be unavailable. We proceed to find a suitable
integral input-output parameterization of the angular
velocity variable.

3.4 Integral input-output parameterization and
GPI controller

We obtain an integral input-output parameterization of
the pendulum’s angular velocity 6, (), which avoids the
need for using observers, or on line calculations based on
time discretizations of the pendulum position variable
trajectory.

Integrating once the first equation in the normalized sys-
tem (3.1), we obtain:

él(T): 1—¢

/01 sin(p)dp —e/[ju(p)dp] (3.10)

~

We denote such a structural estimate of 6, by 9], and
rewrite-it in its simpler form as,

= 1

br) = [ [ tsnto —eu(p))dp] (3.11)



The exact relation of the angular velocity structural es-
timate (3.11) with the actual link angular velocity, 61,
is given by

B1(r) =61 (r) — 6:(0) (3.12)
where 8, (0) denotes the unknown initial angular velocity
of the pendulum link.

Using the structural estimate of §; in the controller (3.8)
and complementing with integral control action based
only on the output tracking error we obtain the following
GPI controller:

u = —:sinel - 15;6 [0;(’0— k1 (61 — 67(7)) +€]

-1 i - {kz( [/OT (sin(8; (p)) —eu(p))dp] = 9?(7)) }

€ = —ko(8y = 0;(7)) (3.13)

The closed loop tracking error dynamics is now given,
after use of (3.12), by

é+k2é+k18
é’ =

The characteristic polynomial of the closed loop system
(3.14) is given by:

oy (0) + ¢
—kge

(3.14)

e®) 4 kpé + kyé+koe =0 (3.15)

Evidently (3.15) can be made globally exponentially
asymptotically stable by proper choice of the set of de-
sign parameters, {kz, k1, Ro}-

We summarize the previous development in the follow-
ing proposition.

Proposition 3.1 Suppose a desired angular displace-
ment trajectory 67 (t) is given, for the nonlinear nor-
malized gyroscopic system (3.1), which takes the pen-
dulum link from its resting downward position towards
the unstable upright position. Then, the GPI feedback
controller, (3.13), globally exponentially asymptotically
stabilizes the tracking error e =6, — 65 (r) to zero, pro-
vided the design gains {kq, k1,ko} are chosen so that the
polynomial p(s) in the complex variable s,

p(s) = 8% + kos® + kys + ko

ts Hurwitz. The controlled motions ezhibit an uniformly
increasing disk position residual behavior, characterized
by a constant steady state inertial disk angular velocity.

Figure 5 shows the performance of the controller for
a manipulator characterized by the following parame-
ters, taken from [[7]], m; = 0.02 [Kg], mgo = 0.063 [Kg],

Iy = 0.125 [m], I =0.063 [m], I; =47 x 10~ [Kg-m?],
I, = 32x 107% [Kg-m?], g = 9.8 [m/s?. The control
task consisted in maneuvering the pendulum link from
the initial position, 8; (1) = 7 [rad] towards the final up-
wards position, 6;(r;) = 0 [rad], in a (non-normalized)
time interval of ¢ —¢; = 1[s], with t; =1 [¢] and ¢ = 2
[s]. The controller parameters were chosen so that the
closed loop characteristic polynomial for the normalized
system coincided with (s? + 2xwns + w2)(s + B), with
x = 0.85, w, = 1, § = 2. The nominal trajectory for
the pendulum link anular gposition 8} (7) was specified
by means of the same Bézier polynomial used in the
previous example.

4 Conclusions

In this article, we have extended the use of GPI con-
trollers for the trajectory tracking of some mechanical
robotic manipulators. The idea, originally developed
within the context of linear systems (see [4]) has been
shown here to be also applicable to a certain class of
nonlinear mechanical systems. The developed feedback
controllers are either based on exact linearization, ex-
ploiting the system flatness , or on partial linearization,
as in the gyroscopic pendulum. The control synthesis
only uses the available measurement of a single angular
position output signal and the knowledge of the applied
torque input. The scheme renders state observers and
time discretizations completely unnecessary for the com-
putation of the system’s angular velocities. Such quan-
tities are not required to be known in a precise fashion
and only “structural estimates” are needed. The off-
set errors incurred in using such structural estimates in
the controller are readily compensated in the feedback
loop by adding suitable integral output tracking error
feedback control actions.
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Figure 2: Control scheme for trajectory tracking in single
link manipulator.
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Figure 4: The gyrocopic pendulum.
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trol on the gyroscopic pendulum.



