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In this article, a suitable combination of Sliding Modes and Generalized Propor-
tional-Integral (GPI) control is presented for feedback trajectory tracking in a
single pendulum actuated by a DC motor. The controller is developed in the
context of an angular position trajectory tracking problem. The feedback con-
troller exploits integral reconstructors of the angular position and the angular
velocity variables which are cbtained on the basis of clectrical measurements
alone. The proposed scheme has no need for measurements of the pendulum
angular position or its corresponding angular velocity nor for the asymptotic
dynamic estimation of such mechanical states. The validity of the results are
tested via digital computer simulations.

1 Introduction.

Position control related to nonlinear mechanical systems, invariably re-
quire position measurement and accurate velocity estimation in order to
realize most of the developed state feedback control schemes appearing

* This work was supported by CINVESTAV-IPN and by CONACYT-México, under
Research Contract 32681-A, V. M. Herndndez work was supported by Universidad
Auténoma de Querétaro, México



in the published literature (See, for instance (2], [3] and [14]). Gener-
ally speaking, nonlinear asymptotic state estimators, with linear error
dynamics, although highly attractive in theory, are somewhat difficult to
synthesize for a given nonlinear mechanical system, even if the underlying
system proves to be locally, or globally, observable (see [10]). Aside from
this difficulty, there is always the lack of robustness with respect to the
simplest type of uncertain perturbation, namely; constant load perturba-
tions. In recent developments, a new control strategy, called Generalized
PI control (GPI) has been proposed in {5], as an alternative dynamic
input-output based feedback controller design for constructible (observ-
able) linear systems. The main emphasis here is placed not in accurately
(i.e. asymptotically) estimating the states of the system on the basis of
measured outputs, but, simply, generating “structurally correct” state es-
timates, or integral state reconstructors, based only on input and output
measurements, which can be used in a previously designed full state feed-
back controller. The GPI control scheme, involves linear combinations
of iterated integrals of inputs and outputs to generate the unmeasured
states. The integral state reconstructions are known to differ from the
actual values of the states by error time-functions which are either con-
stant, ramps, parabolas, or finite iterated integrals of such quantities.
Nevertheless, the effects of such unstable state reconstruction errors is
suitably compensated via the addition of a finite nurnber of iterated inte-
grals of output, or input, tracking errors in the controller, Such iterated
integral error compensation can always be carried out in a sﬁitably nested
manner which avoids internal instabilities in the dynamic feedback con-
troller. It should be remarked that the developed GPI control theory, and
its reported applications thus far, mainly deal with linear systems cases.
Extensions of GPI control to the realm of nonlinear systems has been,
so far, limited to the control of DC-to-DC power converters and some
nonlinear mechanical systems (see [11, 12] ). The GPI control strategy
has been applied in, both, stabilization and trajectory tracking prob-
lems in DC motor actuated linear mechanical systems, as demonstrated
in [9] and [8]. The fundamental advantage of the GPI control scheme
in inertia-loaded DC motor systems, lies in the fact that it requires no
position or velocity sensors, nor traditional asymptotic observers. These
facts bear considerable hardware savings in mechanical sensors (coders
and tachometers) and the use of low cost analog electronics replacing ex-
pensive Digital Signal Processing cards or digital computers in the control



loop. Experimental GPI control of rotational spring inertia loaded DC-
motors, have also been reported in [6] where robust performance features
were obtained. In this article, we explore an extension of GPI control for
the regulation and trajectory tracking of a nonlinear mechanical system
constituted by the combination of a DC-motor acting on a single link pen-
dulum. We show that a GPI feedback controller scheme can be suitably,
and advantageously, combined with the robustifying features of a sliding
mode controller. The results are, however, local in two respects: Local
reachability of the sliding surface can be achieved and, also, restricted
angular position trajectories can be ideally tracked.

Figure 1. DC-motor Pendulum system

2 Dynamic Model of a DC Motor-Pendulum
System

Consider the DC motor actuated pendulum, shown in Figure 1. It is well
known (see [13]) that the dynamic model of the composite DC-Motor-
pendulum system is given by:

LI+RI+keg = u, Jij+ Bg+Gsing=knl (1)
J=Jn+ml®, B ="Bm+BL, G=mgl (2)

where ¢ stands for pendulum angular position and m, !, B and g are,
respectively, pendulum mass, length, viscous friction coeflicient and grav-
ity constant. The variables I, u, are, respectively, the armature circuit
electric current and the applied voltage. L, R, k. stand, respectively, for
the armature circuit inductance, the armature circuit resistance and the
back electro-motive force constant. The parameters, Jp,, By, k., denote



rotor mechanical inertia, viscous friction coefficient and DC-motor torque
constant, respectively. We define the state of the DC-motor-pendulum
system as constituted by the pendulum angular position g, the corre-
sponding angular velocity ¢, and the armature circuit electric current 7.
It is easy to see that these state variables, and the system input u as well,
can all be expressed in terms of the pendulum angular position q and a
finite number of its time derivatives. This shows that the composite sys-
tem exhibits the flatness property (See [4]), with the position variable q
being a flat output.

3 A Sliding Mode Generalized PI Controller

We are interested in feedback controlling the pendulum angular position
variable ¢ towards a pre-specified desired trajectory qq(t). The feedback
control actions are to be based only on the availability of the DC mo-
tor armature circuit current, I, and the corresponding armature circuit
input voltage, u. Such a control scheme evidently avoids the need for
mechanical sensors. We regard the electric current, I, as the measured
system output and denote it by y = I. We denote by yq = Iz = I4(¢t)
the corresponding desired output current varidble, computed on the basis
of the known signals, ¢4(t), gu(t) and gy(¢), in accordance to the system
flatness property, expressed by equation (1).
Define the following sliding surface coordinate function:

6 = (y—ya)+ ki@ — g0+ ko / (v = ya)dr 3)
i = [ = Rair—In), =i +a0) (4

where k; and kyp are constant design parameters and § represents the
integral reconstruction of the posjtion variable ¢, given according to the
system dynamics, and ¢(0) is the unknown initial pendulum position.

The integral term in (3) is intended to compensate, under ideal sliding
conditions, for the unknown but constant difference between the actual
value of ¢ and its reconstructed value, ¢, depicted in (4). Differentiating
(3) once, and using the following discontinuous feedback control law:

R d . S
w=1L|-(ks—~ f)y + —dzi—d + k1ga + koya| — LW sign(é)  (5)



where W = 6+n, withn > 0, é >| (—%-{— k1)g |> 0, leads to the following
closed loop sliding surface coordinate {unction dynamics:

b =% k)i~ Wign (5) (6)

Hence, we locally obtain & = 0. Thus, the sliding surface, is locally reach-
able in finite time. Thus, a sliding regime has been shown to indefinitely
exist on the sliding surface 6 = 0. Under ideal sliding surface invari-
ance conditions, & = 0, & = 0, and thanks to the flatness property, (1),
we obtain, after some algebraic manipulations, the following ideal sliding
dynamics:

623) + a,2é'q + a1€‘q = by + bote (7)
€ = ¢—Q4, U=V —V4, V=—5ing, V4 =—singy
B4 Jkg kikm + Bkg G Gkg
az = 7J y a1 = —J ) b] = 7, b() = T

Note that we have obtained an ideal closed loop dynamic system con-
stituted by a linear stable system of the form

bls - bo

G(s) =
(s) s34 as25% + a;s

(8)
in negative feedback connection with the following static nonlinearity:

Wit eq) = ¥(t, g — qa) = P(t,eq) =sing ~singy (9)

The static nonlinearity (9} is, generally speaking, time-varying be-
cause such is the nature of the reference signal g4. In order to use well-
known classical results about absolute stability (see [7]), we proceed to
analyze the sector properties of the nonlinear function (i, e,).

Consider the set S ={g€ R : | q |< w/2}. In Figure 2, it can be seen
that ¥ (¢, eq) belongs to an closed gector of the form, |a, 1], forsome o > 0
as long as gq(t) uniformly belongs to S and eq(t) € [a, b], for some scalar
constants a and b. Note that | dsin(q)}/8q | < 1 for all ¢ € R. However,
a and b depend on the desired reference signal, g4(¢), and the distance
to the boundaries of the set S. In order to ensure that a sector property
is always satisfied, we proceed as follows: 1) Let ¢ be the greatest lower
bound of the distance between the signal values, g4(t), and any one of the
two the boundaries of S, 2) Let ¢ > —2e¢ and b < 2e. It is then easy to



see that 1(t, e,) satisfies the sector conditions: ae < egp(t,eq) < ﬁe

Vi 20, | g l< 5, |e <2, a>0 08=1. To show asymptomc
stablllty and convergence towards the desired p031tion trajectory, qq(t)
under the ideal sliding mode invariance conditions, it suffices to show
absolute stability of the ideal sliding dynamics (7). According to [7], the
sufficient conditions for absolute stability are Gr(s) is Hurwitz and Zp(s)
ts Strictly Positive Real (SPR):

bl s+ bo

Grs) = s34 0352+ (a1 + aby)s + aby (10)
N(s)  s°+ass®+ (ay + Bby)s + Bby
D(s) 3+ a5+ (aq + aby)s + abg

(1)

The Routh criterion states that the first condition is guaranteed if and
only if: .
az >0, aza; +aazby —aby >0, aby >0 (12)

The second condition can be tested using the theorems an definitions
presented in [1]. Thus (11) is SPR if : 1} all coefficients of Zz(s) are
real, 2} all the poles of Z7(s) have negative real parts and 3) the function

f(w), given by !

flw) = o®+ i+ i+ fy (13)
Ja — (a1 + ab1) — (a1 + Bb1)
f2 —Bazbe — aazbo + (a1 + Bb1){a1 + abo)
Jo = aﬁb?]

is strictly positive for all w € R. Condition 1) is readily satisfied and
condition 2) is the same as the Routh test conditions: (12) previously
stated. Regarding condition 3}, we observe that f(w) only contains even
powers of w. Hence, f(w) > 0, YVw € R, provided f4, f2 and fy are strictly
positive. Thus, Zr(s) is SPR if the conditions (12) are satisfied and in
addition:

fa>0, f2>0, fo>0 (14)

Based on these facts, we conclude that the ideal sliding dynamics (7)
is absolutely stable within a finite domain: } gq(¢) |< Z and | ¢4 |< 2e.

\Re{Zr(s)} = Re{%&%)%’(t%}} thus, Re{Zr(s)} > 0 if f(w) =
Re{N(jw)D(—jw)} > 0, see [1].



Therefore, the closed loop system (1), (3), (4), (5) is locally asymptoti-
cally stable and ¢ — q4(t) as ¢ — co0. Finally, the system flatness property
(1) ensures that (y — y4) — 0 also. Moreover, (3) and (4) clearly demon-
strate that: fot(y - Yg)dT — %q(O) We have proved, via the preceding

developments, the following result

Theorem. 1 Consider the composite pendulum-DC motor system (1)
and a desired angular reference trajectory, qq(t), for the pendulum an-
gular position, g, satisfying the restriction | gqq(t) |< 5. Let a feed-
back control action be represented by the sliding mode controller (5), (3),
(4), (12), (14). Where yq is an off-line time-varying computed signal
satisfying: yq = Fl,: [Jga + Bqa + Gsingqqg}. Then, the proposed feedback
sliding mode controller locally drives the controlled system state trajecto-
ries, q(t), g(t), I{t), to satisfy, in finite time, the sliding mode condition:
d = 0, from any initial condition located within the state space set de-
fined by the inequality, § > | (-—kf + k1) g |- Moreover, the ideally
resiricted feedback controlled system variables remain all bounded and the
position trajectories, q(t), evolving on the sliding surface, @ = 0, locally
asymplotically converge towards the desired reference angular trajectory,
qalt), from any sliding surface hitting point satisfying the boundary layer
condition: | g — q4(t) |< 2¢, with, € > 0, being such that, —a/2 < €, and,
b/2 < ¢, where a < b are real constant parameters such that, for all t,

Q"Qd(t) € [aab]

4 Simulation Results.

The numerical values of the DC motor-pendulum system parameters that
will be used in the simulations are the following: J = 44.8 x 10~°kg — m?,
G = 39.28 x 10 3kgm?s~2, B = 0.62419 x 1073N —m —s/rad, I =
43.31mH, R=30Q, k;, =56.37x1073N —m/A, k. =0.076V — sec/rad.
We prescribed a desired angular~position trajectory ¢g(t) to be tracked
by the pendulum position ¢ as gg(t) = 0.6(cos(t) — 1)rad for ¢t € [0, 7]
and gq(t) = ~1.2 for ¢t > 7. Figure 3 shows the simulation results when
the proposed GPI plus Sliding Mode controller proposed in section 2 is
used for tracking of the desired pendulum position. Initial conditions for
the simulation were set to be, ¢(0) = —0.5 [rad], ¢(0) = 1 [rad/s|, y(0) =
1(0) = 0 |A]. The sliding surface parameters parameters were set to be,
ko = 60, k1 = 10. We also used the following design values: a = 0.2, § =
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Figure 2: Sector properties of ¥(t, g — qa).

1. Note that, as expected, the actual pendulum position ¢ asymptotically
converges towards the desired sinusoid trajectory gq4(t). Simulation results
show good tracking performance features. As expected, the control input
signal, u, remains bounded throughout the trajectory tracking task.

5 Conclusions.

A sliding mode GPI feedback control scheme has been presented for the
local stabilization and trajectory tracking of a nonlinear system consti-
tuted by a DC motor and a rigid pendulum. A locally reachable sliding
surface, which only requires input and output variables of the electric
type, was shown to lead to an ideal sliding dynamics characterized by a
linear stable system in negative feedback connection with a static non-
linearity of the sector type. Local asymptotic stability of the closed loop
ideal sliding dynamics was demonstrated by resorting to classical absolute
stability results. Integral state reconstructors have been shown to be use-
ful for the controller synthesis in a particular nonlinear mechanical system
tracking controller design example. Hence, for local position stabilization
and for limited excursion trajectory tracking tasks, in the described non-
linear pendulum-DC motor system, additional hardware for position and
velocity measurements has been shown to become largely unnecessary.
Sliding mode control, which is known to be quite robust, while enjoying
sufficiently simple implementation demands, has been shown to be eas-
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Figure 3: Pendulum DC. motor system responses, and applied control
input, to SMGPI feedback tracking controller.

ily combined with integral reconstructors and iterated integral tracking
error compensation schemes, thus providing the overall control approach
with enhanced robustness and simplicity. Global trajectory tracking re-
sults have been recently obtained for the composite system studied in
this article when angular position measurements alone are allowed still
within a GPI scheme which needs no velocity, nor acceleration, measure-
ments. These and other results, which lie outside the realm of sliding
mode control, will be reported in a forthcoming publication.
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