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Abstract

In this article we show that the series resonant DC/DC converter, which is a hybrid system, is
piecewise differentially flat with a flat output which is invariant with respect to the structural changes
undergone by the system evolution. This fact considerably simplifies the design of a switching output
feedback controller that can be essentially solved by linear techniques. Flatness clearly explains all
practical issues associated with the normal operation of the converter. Experimental results are presented
which further evidence the actual applicability of the technique.
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1  Summary

In this article, we approach the regulation problem of a popular DC/DC power converter, known as the
“series resonant converter”, from the combined perspective of differential flatness and hybrid systems. The
converter is a variable structure system with a linear controllable model in each one of the two locations,
or regions, of the systems hybrid state space. On each constitutive location of the corresponding hybrid
automaton, the system is thus represented by a flat system. The flat output expression of the system, in
terms of the state variables, is distinctively marked by the hybrid character of the system. However, the
differential relation existing between the flat output and the control input is invariant throughout the set of
locations. By resorting to flatness, one clearly shows that the circuit variables which are required to achieve
resonance (i.e. sinusoidal oscillatory behavior) also exhibit invariant differential parameterizations, in terms
of the flat output. These two facts considerably simplify the hybrid controller design problem for both the
“start up” phase and the steady state energy set point regulation phase of the converter. The regulation
of the steady state oscillations entitle switching on a hyperplane whose synthesis requires knowledge of
the resonant state variables. The practical limitations on the availability of such measurements is greatly
alleviated by the fact that the controllable flat output dynamics is also observable from the only measurable

*This research was supported by the Centro de Investigacién y de Estudios Avanzados del Instituto Politécnico Nacional,
(CINVESTAV-IPN), of Mexico and by the Consejo Nacional de Investigaciones Cientificas y Tecnoldgicas, (CONACYT), under
Research Contract, No. 32681-A.



output. This implies that the “start up” process, and the synthesis of a stable oscillatory behavior, can
be entirely carried out by means of an output-based hybrid feedback controller using either an asymptotic
observer or using an hybrid version of an integral state reconstructor, of recent introduction in the control
systems literature (See Fliess et al [3]).

2 The series resonant DC/DC power converter

Resonant converters have been the object of sustained interest throughout the last two decades. Roughly
speaking, the controller design for such hybrid systems has been approached from different viewpoints includ-
ing: an approximate DC viewpoint, a phase plane approach, averaging methods defined on phasor variable
methods and, more recently, from a passivity based approach.

Approximate analysis, based on DC considerations, was undertaken in Vorpérian and Cudk [13] [14].
These tools are rather limited given the hard nonlinear nature of the converter. Control strategies based on
state variable representations were initiated in Oruganti and Lee in [15], [5]. These techniques were clearly
explained later, on a simplified converter model, in Rossetto [6]. An optimal control approach was developed
in Sendanyoye et al [10] and a similar approach was reported in the work of Oruganti et al [7]. Several authors
have also resorted to either exact or approximate discretization strategies as in Verghese et ol [12] and in Kim
et al [4]. A phasor transformation approach was provided in the work of Rim and Cho {8], which is specially
suited for DC to AC conversion. An interesting averaging method, based on local Fourier analysis, has been
presented in an article by Sanders et al [9]. These frequency domain approximation techniques have also
found widespread use in other areas of power electronics. Using this approach, approximate schemes relying
on Lyapunov stability analysis and the passivity based control approach, have been reported, respectively,
in the works of Stankovic et al [11] and Escobar {1].

Our approach is fundamentally based in the concept of differential flatness introduced few year ago in
Fliess et al [2). The flatness property, exhibited by many systems of practical interest, is here exploited to
obtain, from its simple linear dynamics, suitable estimates, or integral reconstructors, of the converter state
variables by means of linear design techniques.

Figure 1 shows a simplified nonlinear circuit representing the series resonant DC/DC power converter.
The controlled nonlinear differential equations modeling the circuit are given by

di

LZ = -v—p sign (i) + E(t)
dv .
CE = 1
d .
CO% = abs (i) - % A (2.1)

where v and i are, respectively, the series capacitor voltage and the inductor current in the resonant series
tank, while g is the output capacitor voltage feeding both the load R and the sink current fy which, for
simplicity, we assume to be of value zero. The input to the system is E(t), which is usually restricted to
take values in the discrete set {—F, E} where E is a fixed given constant.

The objective is to attain a nearly constant voltage across the load resistance R on the basis of the
rectified, and low-pass filtered, sinusoidal inductor current signal internally generated by the system in the
L, C series circuit with the suitable aid of the amplitude restricted control input signal.

One readily obtains the following normalized model of the resonant circuit equations (2.1).

2 = —z9—z3signz +u
z'z = 21
5 23
ai3 = abs(z) - 2 (2.2)

where, abusing the notation, the symbol: “ ” now represents derivation with respect to the scaled time,
7. The variable, u, is the normalized control input, necessarily restricted to take values in the discrete set,
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Figure 1: The series resonant converter.

{+1,-1}. The parameter @, defined as Q = R+/C/L, is known as the “ quality factor” of the circuit, while
the constant, a, is just the ratio, @ = Cy/C.
The normalized resonant converter may then be represented as the Aybrid automaton shown in Figure 2.

2.1 Differential flatness of the hybrid converter

We propose to view the normalized converter system dynamics (2.2) as constituted by a “hybrid” combination
of two linear controllable (i.e., differentially flat) systems, each one characterized by a corresponding flat
output. Consider then the following pair of controllable linear systems, derivable from the system model for
the instances in which z; > 0 and 2; < 0, respectively.

forz; >0
21 = —Z-zztu
i’z = Z
. 23
Qrz3 = 21— ==
Q
(23)
forz; <0
2 = —zm+tzztu
22 = 2z
. 23
Qazz = =21 — <
Q

Indeed, on each state space location the system is constituted by a controllable and, hence, differentially
flat system. As a result, there exists, in each case, a flat output y which is a linear combination of the state
variables. Such outputs allow for a complete differential parameterization of each local representation of the
system. The flat output variables are given by,

y = z—azz ; forz; >0
y = z+az ; forz; <0

which have the physical meaning, respectively, of being proportional to the difference and the sum of the
instantaneous stored charges in the series capacitor, C, and the output capacitor, Cop.



Figure 2: The normalized resonant converter as a hybrid automaton.

One readily obtains the following differential parameterization of the constitutive system variables in
each case,

forz; >0

23 = Qy

7 = y+aQy

n = ytoQj

v = aQy®+i+Q(L+a)y+y
for z; <0

23 = —Qu

7 = ytaQy

2z = y+aQj

v = aQu® +i+Ql+a)y+y

The key observations, on which our control approach is based, are the following:

o The differential parameterizations associated with the flat outputs lead to the same differential relation
between the flat output, y, and the control input u. In other words, independently of the region of the
state space of the underlying hybrid system, the flat output satisfies the dynamics,

oQu® +i+Ql+a)y+y=u (2.4)

o The normalized series capacitor voltage, zz, and the normalized inductor current, 21, (i.e. the resonant
variables ) also exhibit the same parameterizations in terms of the corresponding flat output.

n=y+aQy, zn=y+aQy

These representations are, therefore, invariant with respect to the structural changes undergone by the
system.

e The input-to-flat output differential relation has a naturally observable realization from the only mea-
sured output.



Based on these observations, an output switching feedback law is synthesized. Simulation, as well as
experimental, results of the feedback regulation of the studied converter are reported in the full version of
the article.
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