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Abstract: In this paper, we use a Generalized Hamiltonian systems approach to
synchronize two unidirectionally coupled hyperchaotic Chua circuits. Synchronization
is thus between the transmitter and the receiver dynamics with the receiver being
given by an observer. We apply this approach to transmit digital information signals
in which the quality of the recovered signal is higher than in traditional observer
techniques while the encoding remains potentially secure.Copyrigth © IFAC 2002
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1. INTRODUCTION

The application of chaotic synchronization to se-
cure communication systems was suggested in an
earlier article by (Pecora and Carroll 1990). Ever
since the appearance of that paper, synchroniza-
tion of chaotic systems has received a lot of atten-
tion and interest. Diferent approaches are being
currently proposed and pursued (see, for instance,
e.g.. (Kocarev et al., 1992; Ogorzalek, 1993; Wu
and Chua, 1993; Ding and Ott, 1994; Feldmann, et
al., 1996; Nijmeijer and Mareels, 1997; Special |s-
sue, 1997; Cruz and Nijmeijjer, 2000; Sira-Ramirez
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and Cruz, 2001; Pikovsky et al., 2001) and the
references therein).

Data encryption using chaotic dynamics was re-
ported in the early 1990s as a new approach for
signal encoding which dizers from the conven-
tional methods using numerical algorithms as the
encryption key. As a result, the synchronization
of chaotic systems plays an important role in the
area of chaotic communications. The issue of secu-
rity, however, naturally arises in the consideration
of chaotic communication and it constitutes an
important motivation for chaotic communication

-research. In particular, several techniques, such

as chaotic masking (Cuomo et al., 1993), chaotic
switching (Parlitz et al., 1992; Cuomo et al., 1993;
Dedieu et al., 1993) and chaotic parameter mod-
ulation (Yang and Chua, 1996) have been devel-
oped. However, subsequent works have shown that
these techniques have a low degree of security (see



(Short, 19994, 1996; Perez and Cerdeira, 1995;
Yang, 1995)).

Two factors that are of primordial importance in
security considerations related to chaotic commu-
nication systems. These are; the dimensionality of
the chaotic attractor and the effort required to
obtain the necessary parameters for the matching
of a receiver dynamics.

One way to enhance the level of security of the
communication system can consist in applying
proper cryptographic techniques to the informa-
tion signal (Yang et al., 1997). Another way to
solve this security problem is to encode the mes-
sage by using high dimensional chaotic attractors,
or hyperchaotic atractrors, which take advantage
of the increased randomness and unpredictabil-
ity of the higher dimensional dynamics. In such
option one generally encounters muitiple positive
Lyapunov exponents. However, the synchroniza-
tion of hyperchaotic systems is a much more dif-
.cult problem (Brucoli et al., 1996; Peng et al.,
1996).

The objective of this paper is to extend the
approach developed in (Sira-Ramirez and Cruz,
2001) to the synchronization of hyperchaotic cir-
cuits through a Generalized Hamiltonian systems
approach. In this work we show that the syn-
chronization of two hyperchaotic Chua circuits is
possible from this viewpoint and, morevoer, we
proceed to apply this approach to transmit dig-
ital information signals using chaotic parameter
switching. We can enumerate several advantages
over the existing methods:

2 it enables synchronization be achieved in a
systematic way; -

2 jt can be successfully applied to several well-
known hyperchaotic oscillators (e.g., Rossler’s
hyperchaotic system);

2 it does not require the computation of any
Lyapunov exponent;

2 it does not require initial conditions belonging
to the same basin of attraction.

2. SYNCHRONIZATION OF
HYPERCHAOTIC CHUA'S CIRCUITS

Consider the following n-dimensional autonomous
system

x =f(x); x2R" M
which represents a circuit exhibiting a hyper-
chaotic behavior. Following the approach pro-
vided in (Sira-Ramirez and Cruz, 2001), many
physical systems described by Eq. (1) can be writ-
ten in the following “Generalized Hamiltonian ”
Canonical form,

x=JOIL LSO Fm @

where H (x) denotes a smooth energy function
which is globally positive de..nite in R™. The col-
umhn gradient vector of H, denoted by eH=ex, is
assumed to exist everywhere. We frequently use
quadratic energy function H (x) = 1=2 x" M x
with M being a, constant, symmetric positive
de..nite matrix. In such case, @H=ex = M x. The
square matrices, J (x) and S (x) satisfy, for all
x 2 R", the following properties, which clearly
depict the energy managing structure of the sys-
tem, J(X) +J T (x) = 0and S(x) =ST (x). The
vector ..eld J (x) @H=ex exhibits the conservative
part of the system and it is also referred to as the
workless part, or work-less forces of the system;
and S (x) depicting the working or nonconser-
vative part of the system. For certain systems,
S (x) is negative de..nite or negative semide...nite.
In such cases, the vector ..eld is addressed to as
the dissipative part of the system. If, on the other
hand, S (x) is positive de..nite, positive semidef-
inite, or inde..nite, it clearly represents, respec-
tively, the global, semi-global and local destabiliz-
ing part of the system. In the last case, we can
always (although nonuniquely) descompose such
an inde..nite symmetric matrix into the sum of a
symmetric negative semide..nite matrix R (x) and
a symmetric positive semide..nite matrix N (x).
And where F (x) represents a locally destabilizing
vector ..eld.

We consider a special class of Generalized Hamil-
tonian systems with destabilizing vector ..eld and
linear output map , y, given by

_..eH eH ‘ .
)_(—J(y)a+(l+s)a+F(y), X 2 R
@H‘ -
y=C@—x, y2R (3)

where S is a constant symmetric matrix, not nec-
essarily of de..nite sign. The matrix | is a constant
skew symmetric matrix. The vector variable y is
referred to as the system output. The matrix C is
a constant matrix.

We denote the estimate of the state vector x by
», and consider the Hamiltonian energy function
H (») to be the particularization of H in terms of
». Similarly, we denote by the estimated output,
computed in terms of the estimated state ». The
gradient vector @H (»)=@» is, naturally, of the form
M,

A dynamic nonlinear state observer for the system
(3) is readily obtained as

»=J(y)%+(l +S)%+F(Y)+K()’i )



eH
@»
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where K is a constant matrix, known as the
observer gain.

The state estimation error, de..ned as e = xj »
and the output estimation error, de..ned as ey, =
yi ’, are governed by

e=J(y)%+(l +Sj KC)%; e2R"

@
ey=C@—':; e, 2R™ 5
where the vector, @H=ee actually stands, with
some abuse of notation, for the gradient vector
of the modi..ed energy function, eH(e)=ee =
eH=ex j eH=e» = M(x ») = Me. Below,
we set, when needed, | +S = W. We say that
the receiver system (4) synchronizes with the

transmitter system (3), ife(t)! Oast! 1.
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Fig. 1. Pair of identical unidirectionally coupled
Chua circuits.

L

Two coupled Chua circuits (see, (Anishchenko
et al, 1994; Brucoli et al, 1996)). The hyper-
chaotic circuit considered in this paper is formed
by a pair of unidirectionally coupled identical
Chua circuits as shown in Fig. 1. This circuit is
described by

Cix1 =G(xzj X1)j F (x1);
Cox2 =G (X1 X2) + X3+ Cok (X5 | Xz2);
Lx3=j Xz (6)
Cixa=G(Xsj Xa)i F(xq);
Coxs = G(Xqj Xs5) + Xsi
Lxs=j X5

where
1 R .. .
F &)= bx1+§ (@j bY (i1 +1jj jx1j Y4);a;b<0;

F 0 = ey (2 b) G+ T xaj 1);arb <0,

The parameter k individualizes the unidirectional
coupling between the two Chua circuits.

The set of direrential equations describing hy-
perchaotic Chua circuit in Hamiltonian Canonical
form with a destabilizing ..eld is given by

Fig. 2. Double-double scroll attractor in hyper-
chaotic Chua circuit with k = 0:02, ® = 10,
=14:87,a =i 1:27 and b = j 0:68.
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taking as the Hamiltonian energy function the
scalar function

£ n
HO % Cx+Coxe+ x4 Crx2aCoxlalnd (8)

and gradient vector as

@ £ .
@—,;(' = Cix1 Coxz Lxsz Cixg Coxs Lxg T

The destabilizing vector ..eld evidently calls for x4
and x4 to be used as the outputs, y; and y,, of
the transmitter (7). The matrices C, S and |, are
given by

1

2
200000

c=96C ;
000500
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The pair (C;S) is neither observable nor. de-
tectable. However, the pair (C; W) is observable.
The system lacks damping in the X3 and xg vari-
ables, and either in the X1, Xz, X4 or the x5 vari-
able as inferred from the negative semi-de...nite
nature of the dissipation structure matrix, S. If X,
and x4 are used as outputs, then the outputs error
injection terms can enhance the dissipation in the
error state dynamics. The receiver is designed as
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The choice of k;, i = 1;2;:::;6 as arbitrary strictly
positive constants su¢ces to guarantee the asymp-

totic exponential stability to zero of the synchro-
nization error. The synchronization error dynam-
ics is governed by

2 3
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To ease the simulations we resorted the following
normalized version of the hyperchaotic circuit (see
(Anishchenko et al., 1994))

=®(xzj X1j F(x1));

X1j X2 + Xz +k{Xs§ X2);

i Xo: v
(xsi Xaj f(xa));

Xqaj X5+ Xe;

Xs
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where

1 . Lo .
f (1)) =bx1+5 @i b)(x1+1j jxii 1);

1 . .o .
f(x4)=bx4+i(a; b)(jxa+1ji jxai 1j):

The transmitter and the receiver are both charac-
terizéd by the following parameter values: ® = 10,
T =14:87,a =127, b= 0:68 and k = 0:02;
and by the initial conditions:

x (0) = (0:01;0:01;0:01; 0:011; 0:01; 0:01) ;
» (0) = (0:011;0;0;0.012;0;0) :

These values assure the existence of the system
hyperchaotic behavior. Figure 2 shows the double-
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Fig. 3. Synchronization error evolution e; = X; j
»;, 1 =1;2;::;6 between (9) and (11).

double scroll attractor in hyperchaotic Chua cir-
cuit (11). While Figure 3 shows the synchroniza-
tion error evolution (&; = X; i », i = 1,2;:::,6)
between transmitter system (7) and receiver sys-
tem (9) for the observer gain k; = 2, k; = 3,
k3 = 0, kg = 2, ks = 3, and kg = 0. We can
see, after some transient behavior, that al} the
hyperchaotic states of transmitter (7) synchronize
with the corresponding states of receiver (9).

3. SYNCHRONIZATION STABILITY
ANALYSIS

In this section, we examine the stability of the
synchronization error (10) between hyperchaotic
Chua circuit (7) and observer (9). A necessary and
su¢cient condition for global asymptotic stability
to zero of the estimation error is given by the
following theorem.

Theorem 1. (Sira-Ramirez and Cruz, 2001). The
state x of the nonlinear system (7) can be globally,
exponentially, asymptotically estimeted, by the
state » of the observer (9) if and only if there exists
a constant matrix K such that the symmetric
matrix

Wi KCl+[W; KCI" =[S; KCI+[S| KC]T
S .
=25 %'KC+CTKT

is negative de..nite.

4. APPLICATION TO CHAOTIC
COMMUNICATIONS

Here, we apply the Hamiltonian synchronization
of hyperchaotic Chua circuits to chaotic switching.
In this technique, the message m (t) is a binary
signal, and is used to modulate one or more
parameters of the transmitter, i.e. m (t) controls a
switch whose action changes the parameter values
of the transmitter. Thus, according to the value
of m(t) at any given time t, the transmitter has

Fig. 4. (a) Digital information signal m (t), (b)
synchronization error detection eq (t), (c)
transmitted hyperchaotic signal x, (t).

either the parameter set value p or the parameter
set value p. At the receiver, m(t) is decoded by
using the synchronization error to decide whether
the received signal corresponds to one parameter
value, or the other (it can be interpreted as an one
or zero). In our case, to transmit m (t) via chaotic
switching, let ~ be the parameter to be modulated
in the hyperchaotic Chua transmitter (11), the
parameter ® was .xed. We use a "modulation
rule” to modulate m (t) as follow ~(t) = = +rt
m (t), where r = 0:2 while the message is de..ned
as

8
1. 0 t<15
%0: 15 t<30;
1, 30 t <45
mO=_0 5. t<oé0
§1; 60 t <75
075 t<90:

The following ..gures illustrate the binary trans-
mission of m () when ~ is switched between
" (1) = 14:87 and " (0) = 15:07. Figure 4 de-
picts: (a) the message to be transmitted, (b) the
synchronization error detection eq (t) and (c) the
transmitted hyperchaotic signal x, (t); whereas,
Figure 5 shows: (a) the message to be transmitted,
(b) the synchronization error detection e4 (t) and
(c) the transmitted hyperchaotic signal x4 (t). Fig-
ures 4(b) and 5(b) clearly show that the original
message is recovered at the receiver.

5. CONCLUDING REMARKS

In this paper, we have approached the problem
of synchronization of two hyperchaotic Chua cir-
cuits from the perspective of Generalized Hamil-
tonian systems including dissipation and desta-
bilizing terms. The approach allows one to give
a simple design procedure for the receiver sys-
tem and clari..es the issue of deciding on the
nature of the output signal to be transmitted.
Our scheme can be successfully applied to several
well-known hyperchaotic osillators (e.g., Rossler's



Fig. 5. (a) Digital information signal m (t), (b)
synchronization error detection e4 (t), (c)
transmitted hyperchaotic signal x4 (t).

hyperchaotic system with a scalar transmitted
signal). The approach is easily implemented on
experimental setups, and shows great potential
for actual communication systems in which the
encoding is required to be secure.

In a forthcomming article we will be concerned
with a physical implementation of the method
with a speci..c quantization of the degree of safety
of the proposal in actual communication systems.
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