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Abstract— In this article, we present a flatness based
control approach for the stabilization and equilibrium-to-
equilibrium transfers, via trajectory tracking, of the Fu-
ruta pendulum. We introduce three feedback controller
design options for the stabilization and rest-to-rest tra-
jectoring problems; a direct pole placement approach, a
hierarchical high-gain approach and Generalized Propor-
tional Integral (GPI) approach, based only on measured
inputs and outputs.

Keywords Flatness, High-gain control, Generalized
Proportional Derivative control, Furuta pendulum sys-
tem.

1. INTRODUCTION

In this paper, we present a differential flatness ap-
proach for the stabilization and trajectory tracking, in
a Furuta pendulum system. The adopted model as-
sumes that the inverted pendulum travels withm a suf-
ficiently small vicinity of its unstable equilibrium point,
while the horizontal arm covers a large angle maneu-
ver in a prespecified time interval. Differential flat-
ness of the tangent approximation is then exploited in
three different proposed controller design approaches: a
pole placement-based controller, a hierarchical high-gain
controller, related to the celebrated backstepping de-
sign procedure, and finally, a Generalized Proportional
Integral (GPI) approach, recently developed by Fliess
and his coworkers in [2} and [3] . The latter technique
exploits traditional linear state feedback, but uses no
state measurements and no asymptotic state observers.
Rather, the state vector is replaced by a linear combina-
tion of iterated integrals of the input and of the output,
which purposely neglects initial conditions. The effect

This research was supported by the Centro de Investigacién en
Computacién of the Instituto Politécnico Nacional (CIC-IPN),
by the Centro de Investigacién y Estudios Avanzados del IPN,
(CINVESTAV-IPN) and by the Consejo Nacional de Ciencia y

Tecndlogia (CONACYT-México), under Research Grant 32681-
A.

of the initial conditions is later compensated, thanks to
the superposition principle, via a sufficient number of
iterated integrations of the output tracking error. The
dynamic feedback control scheme is found to be inter-
nally exponentially asymptotically stable via a suitable
and natural nesting of the open loop integrations.

Section 2 presents a flatness-based linear pole
placement-based controller for the stabilization of
the underactuacted Furuta pendulum system. The
equilibrium-to-equilibrium transfer of the system,
within a finite time interval, is also accomplished by
a pole placement-based trajectory tracking controller
exploiting the flatness property. In order to obtain a
more robust controller design, a hierarchical high-gain
feedback controller scheme is also derived in Section 3.
In section 4 we present a GPI feedback controller for
the stabilization and trajectory tracking problems for
the Furuta pendulum. The proposed GPI controller
requires only precise input and output measurements
which, in this case, are represented by the applied input
torque and the obtained angular position of the arm. In
the three controller design cases, we present computer
simulation results depicting the performance of the sys-
tem to the particular feedback controller option. Section
5 is devoted to present the conclusions of the article.

II. THE FURUTA PENDULUM

The Furuta pendulum, is a system consisting of an
inverted pendulum connected to an horizontal rotating
arm (see Figure 1) acted upon by a direct dc motor
drive. The nonlinear model of the mechanical part of
the system, which can be derived from either Newton, or
the Euler-Lagrange formalism (See Lozano and Fantoni



[1]), is given by
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where 6 is the rotational angle of the arm, 6, is the
rotational angle of the pendulum, and f is the input
torque applied to the the joint of the horizontal arm.
The torque f acts as the only control input. The pa-
rameters m,; and J; stand for the mass of the pendulum
and the inertia of the pendulum around its center of
gravity, respectively. Jp is the inertia of the horizontal
arm. Lg and [, are the total lengths of the arm and the
vertical distance of the center of gravity of the pendu-
lum to its pivot point on the extreme of the horizontal
arm.

We first proceed to normalize the equations of the
above system. Define the scaled variables
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We obtain, after some algebraic manipulations, the fol-
lowing normalized system:
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where, with an abuse of notation, the “ dot ” stands for
differentiation with respect to the normalized (dimen-
sionless) time 7.

Linearization of the normalized system around the
unstable equilibrium point 8§y = X=constant,§, = 0,
6o =0 and 8, =0 is achieved by defining the incremen-
tal errors as follows: 895 = 09— X,015 =01 and us = u,
we obtain:

Déo:s + ;{:9.16 =ug (5)
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The incremental flat output, denoted by Fs, is, in this
case, given by the following relation

Fs = pbos + nbrs-

Indeed all the variables can be parameterized in terms
of the flat output Fs and a finite number of its time
derivatives, as follows
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Finally, note that the differential parameterization
(6), allows for some analysis of the behavior of the var-
jous system incremental variables. For instance, the in-
cremental angular position, fys is a non-minimum phase
output of the system since its zero dynamics, corre-
sponding to 0gs =0, is given by the unstable dynamics:

Fs = Fs/n.

The zero dynamics associated with the incremental an-
gular position, 64 satisfies the differential equation

which has the origin as a critically stable equilibrium.

II1. A FLATNESS-BASED POLE PLACEMENT APPROACH
FQR STABILIZATION AND TRACKING

A. Stabilization around the unstable equilibrium point

The state dependent input-coordinate transforma-
tion,

O - o
ug = —Fs + —vs, (7)
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shows that the linearized system (6), is equivalent to the
following chain of integrations:

FY = v, ®)

A stabilizing feedback controller may be readily ob-
tained by setting

vs = —ko |bos + 161s) — k1 [#906 +7'Ié16]
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where theset of coefficients { ky, k1,k2, k3} is chosen such
that the closed loop characteristic polynomial of the lin-
earized system, defined as:

p(s) = s+ kys® + ko + ks + ko

is a Hurwitz polynomial.



B. Simulation Results

Figure 2 shows the closed loop responses, to the de-
rived feedback controller, when applied to the original
nonlinear system (1). A significant initial deviation of
the angular position of the pendulum and the angular
position of the arm were hypothesized to be, §hs = —0.2
[rad] and @ys = 0.15 [rad] In the simulation we used the
following numerical values of the physical parameters:

Ip = 0.175 [m)
I, =0.25 [m]

Lo =025[m] m; =0.15[Kg]
Ji =019 [N —m —s?

The closed loop characteristic polynomial was chosen to
be

p(s) = (52 + 2¢w,s + wl,z,)‘2
with ¢ =0.707 and w, =0.9.

C. Trajectory tracking for a rest-to-rest maneuver

Based on the linearized system model (5), we can at-
tempt a trajectory tracking approach to the problem of
changing the angular position of the horizontal arm be-
tween an initial and final value while keeping the pen-
dulum around its unstable equilibrium position. The
rest-to-rest maneuver is to be accomplished within a fi-
nite time interval, following a smooth trajectory with
no restriction on the magnitude of the horizontal arm
angular displacement.

We first assume that the horizontal arm is located,
at time T = Tinitial, 8t a resting point 6y(Tinitiat) =
Xinitial, with the pendulum standing in its unstable
equilibrium position 6,(7iniriat) = 0. The correspond-
ing incremental state equilibrium point is characterized
by:

‘906(T'i'nitial) = 07 :906(7.1'111'!,1{01) = 01
016(Tinitiat) =0, O16(Tinitiat) =0

It is desired to move the angular position of the hori-
zontal arm to a new position 0y(7 finai) = X finar within
a finite time interval T = 7 fina1 — Tinitiat, i such way
that when the arm reaches the desired final position, the
pendulum exhibits no oscillations around the unstable
equilibrium point. This mean that the horizontal arm
angular position 6ys and the pendulum angular posi-
tion @15 adopt the following equilibrium point, at time

T =Trinal
005 (7 finat) = Xfinat — Xinitiat, 008(Tfinat) =0,

elﬁ(Tff""l) = 01 é15(7-[1'.ﬂul) =0

We next assume that we can accomplish the maneuver
with a small angular deviation of the pendulum from the

vertical line, so that we can still use the linearized sys-
tem (5) for deriving the feedback controller. Naturally,
we test the performance of the resulting linear feedback
controller on the nonlinear system model (1).

Let us recall, from (6), the control input differential
parameterization of the linearized system

0. g
us = —Fs + —Fé(ll)
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A controller which achieves the equilibrium-to equilib-
rium transfer, via trajectory tracking, is given by the
following expression
0.
us= =F5—
It
2 [~ (B3O + ko(Fs = F (1) + ka(F = F7 (1))
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where the set of coefficients {ko, k1, k2, k3} is chosen so
that the closed loop characteristic polynomial of the lin-
earized system, given by, p(s) = s + k3s® + kys?+ kys +
ko, is Hurwitz.

In terms of the normalized incremental state vari-
ables, the tracking feedback controller is given by

a T 5 5
up=— s = [ko(Fs — Fy (0)) + b (B = Fi (1)) +
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D. Simulation Results
In the presented simulations, the equilibrium-to-
equilibrium trajectory Fy(t)for the flat output Fy,was
implemented by the following function
FJ(1) = Fs(Tunitiat) + [F6(T pinat) — Fs(Tiniviat))] *
1/’}(7-1 Tinitioly Tfhml)
(1)
where Y(T, Tinitial) T final) 16 & polynomial in the nor-
malized time variable Tsatisfying,
Y(Tinitial, Tinitial, T final )=0
V(T sinaly Tinitioly T finat) =1
We have prescribed such a polynomial, smoothly inter-
polating between Oand 1, as follows
’/J(TyTiniLialyTjinal) = (T_T"F—"IM)J *
6 i~3. (T—Tinitial\i—1
Y= (1) ITi( T )
with

7'1:252
T4=1575

re=1050 73=1800
Ts =700 T6=126

Figure 3 shows the closed loop responses for a one time
intervals T = 3.4seconds.



IV. A HIERARCHICAL HIGH-GAIN APPROACH FOR
STABILIZATION AND TRACKING

The previously derived feedback controller (10), is not
quite robust with respect to un-modeled perturbations
affecting the arm motions. Due to this fact, the con-
trol design should be split into a two level strategy as
proposed by Fliess et al in 3] for the crane control prob-
lem, which, incidentally, belongs to the same family of
under-actuacted systems as our treated example.

The high-gain hierarchical approach is as follows: We
first use a lower level high-gain feedback controller to
regulate the position of the arm towards the trajectory
of an auxiliary variable reference signal, gs(7). We now
consider the influence of the variable set point g5(7),0on
the “slow dynamics” of the system and proceed to deter-
mine the law of variation of this reference signal so that
the flat output converges, towards a desired stabilizing
reference trajectory.

From the differential parameterization (6), in terms
of the flat output Fs, we may obtain the following two
relations:

- 1
Fsg=— (Fé —#9(15) 4

. (12)
Gos = =615 — Eum
o o
Consider then the following high gain controller
o .
us ==;;[k19054—k2(905-45@)ﬂ (13)

where g5(t) is and auxiliary variable reference trajec-
tory for the normalized, incremental arm angular posi-
tion fys.Then the closed loop horizontal arm dynamics
is governed by

Bos + k1805 + k2[80s — g5 (t)] = %916- (14)

If the gain kjand kg,are sufficiently large, the motion
of the closed loop system (14) asymptotically converges
towards the following reduced order dynamics, valid on
the controlled system’ slow manifold,

fos = — ]Z—T[Gna - qs(t)] (15)

and, thus, fys exponentially converges to gs(t).Now the
pendulum dynamics, represented by the first equation
of (12), is governed by the reference signal gs(t). We
then have,

o 1
Fs = —F5 — Egs(0). (16)
n n
We may now regard the auxiliary reference signal gs(t)as

a virtual control input, which is to be chosen to guaran-
tee that the flat output Fs follows the desired reference

trajectory Fy(t).We then have,

1
gs(t) = ;(110()6 + n615)
+L [—Fg(t) + 20w, (1805 + 1015 — Fr (1)
+(1Bos + 1015 — Fy(t)wl];

(17)

A. Simulations results

Figure 4 shows the performance of the designed hijer-
archical feedback control system acting on the nonlin-
ear system (1). The values of, kjand k3, were chosen
to be: k; = 25and k; = 10.The reference trajectory,
F;(7) for the flat output, Fs(7), was set to be identi-
cally zero, as required by the stabilization task. The rest
of the controller parameters were set to be, ¢ = 0.70707,
w, = 0.9.In this case, we obtained a control force which
was nearly 5 times larger than in the previous design.

Figure 5 shows the performance of the nonlinear sys-
tem (1) to the proposed hierarchical feedback controller
(17) designed for tracking purposes. The reference tra-
jectory, Fy (7),for the flat output, Fs(7),was set tobe the
same interpolating polynomial (11) used in the previous
section. This trajectory causes the angular position of
the arm to go from the initial value 0 [rad], to that of
1 [rad], for one equilibrium-to equilibrium transfer time
intervals, T' = 3.2[s].

V. A GPI APPROACH FOR STABILIZATION AND
TRACKING

Let us consider the linearized system and define the
incremental output ys = 6ps.The linearized system is
observable with respect this output and hence, it is con-
structible. Therefore, we can obtain an integral input-
output parameterization of the incremental flat output
F5 and its time derivatives, modulo the unknown initial
conditions. Indeed, from (5) we obtain the following
structural estimates of the incremental state variables:

s 1 T A
6= L [ [ [ usterdear - Dyﬁ]
#{Jo Jo

o o T n T X re
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We denote by (f ®)the quantity fOT D(A)dA.
An integral input-output parameterization of the in-
cremental flat output and its time derivatives, are given



by:
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Based on the previously derived controller (7)-(9), the
above structural estimates of the incremental flat out-
put, and its time derivatives, can be used in the syn-
thesis of a Generalized Proportional Integral (GPI ).
One simply replaces the flat output Fs, and its time
derivatives, by the obtained integral input-output pa-
rameterization presented in (18). Taking into account
the neglected initial conditions we proceed to compen-
sate their destabilizing effect via a sufficient number of
integrals of the output stabilization (or tracking ) error.
The required stabilizing GPI controller is obtained as:

T:_F{s—

%(1\ F)\ +k4[‘h+k F6+k(,F —[Jl); (19)
7ﬁ2y6 + Pas ,0]( ) = 0;

{72:—[31%4‘#3; 92(0) =0;

py=—Boys; p3(0) =0.

Then the closed loop dynamics system is governed by
the following expression:

I,]—Iﬁ(s + %F'Eﬂ = —%[ng/; + I\TAIFO
+£k5 - ll:l_f) ﬁﬁ + kr;F,;(x)
+ (ko + Kt + kat?) — p,]
where E]Eand Zg,a.re unknown constants which depend
on the initial conditions. The closed loop system is thus
given by,
R o TP
+B23s + B19s + Boys =0

from the second equation of (6) and recalling that ys =
Oos, we have that ys = (F's — nF‘o)/,u‘ Substituting this
last expression into (20), we obtain the following closed
loop dynamics for the flat output:

FO 4+ ke E® + kP + [l - 252] F{Y
3 B; ¢ N LT
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It is clear that by appropriate choice of the design pa-
rameters, {k¢, ks, k4, k3,84,0,,8,}, we guarantee that

the roots of the closed loop characteristic polyno-
mial, CUR

s+ kos® + kss® + [kq ﬁ"’] +
[,ﬁ_nﬂl]s " ﬁz ﬁon]s+
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may be conveniently located in the left half of the com-
plex plane.

Finally, the rest-to-rest maneuver, by means of suit-
able trajectory tracking, can also be accomplished us-
ing only the angular position measurements of the arm
and the applied input force, by considering the following
GPI feedback tracking controller:

a="
s =7Fﬁ . [ (E2] + ks(Fs - F1)+
s — [FE]H

ka(Fs — [3]) + kol
F1) -5

ko(F -

Py =—Balys —ys5) + pas p1(0) =0;
Py =—By(ys — ;) + p3; p2(0) =0
Py =—By(ys —vs5); p3{0) =0.
where y;is the desired horizontal arm, rest-to-rest, tra-
jectory.
Figure 6 shows the closed loop system responses to
GPI feedback stabilizing corntroller.

VI. CONCLUSIONS

Differential flatness allows one to systematically solve
a number of interesting nonlinear control problem. In
this instance, we have exploited flatness for the efficient
regulation and tracking of the Furuta pendulum, which
happens to be locally controllable ( i.e. flat) around
its unstable equilibrium. Since the system is also ob-
servable, and hence, constructible, an integral input-
output parameterization of the incremental state vari-
ables and of the incremental flat output and its vari-
ous time derivatives is possible. This allows us to ob-
tain a trajectory tracking controller for the incremental
flat output behavior guaranteeing the desired rest-to-
rest maneuver. The input-output integral parametriza-
tion allows one to locally control the system, by simply
resorting to a standard pole placement procedure on a
higher order system devoid of internal instabilities. This
feedback regulation scheme is carried out, without use of
state measurements, or without devising dynamic sys-
tems devoted to solve the state estimation problem, as
traditionally provided by asymptotic state observers.
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Figure 2: Closed loop responses of flatness-based

controlled FP to stabilizing controller
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Figure 3: Closed loop system responses for a large
horizontal arm angular position rest-to-rest excur-
sion
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Figure 4: High-gain hierarchical feedback controller
performance in a stabilization task.
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Figure 5: High-gain hierarchical feedack trajectory
tracking controller performance for a t=3.2.
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Figure 6: GPI Controlled stabilization responses
of the FP.



